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Abstract. The paper considers free vibration analysis of non-planar coupled shear walls resting on 
rigid foundations. The analysis considers coupled shear walls with changes in cross-section, the 
properties of which vary from region to region along the height. In this study, continuous 
connection method (CCM) and Vlasov�s theory of thin-walled beams are employed to find the 
structure stiffness matrix. The structure mass matrix is found with the lumped mass idealization. 
While the discrete structure is formulated as a continuous medium, the continuously distributed 
mass of the structure is discretized to a system of lumped masses for finding the corresponding 
stiffness matrix. After obtaining the standard frequency equation of the discrete system, the 
circular frequencies are determined in a straightforward manner and used to find the modes of 
vibration. A computer program has been prepared in Fortran Language to implement the foregoing 
analysis. The structure is solved both by the present method using CCM and by the SAP2000 
structural analysis program using the frame method. It is observed that the results obtained by the 
present method coincide with those of SAP2000 structural analysis program perfectly. This 
method is an effective method in terms of simplicity of its data and extremely short computation 
time for the predesign of high-rise buildings. 

1 Introduction 
Shear walls are used to resist the lateral loads that arise from the effect of winds and earthquakes. Hence, shear 
walls have become very popular in high-rise buildings. However, the design of shear walls weakened by doors, 
windows and corridor openings is generally unavoidable in structural engineering. These features turn a simple 
shear wall into a coupled pair, which can be considered as two smaller walls, coupled together by a system of 
lintel beams. 

When the coupling action between the piers separated by openings becomes important, some of the external 
effects are resisted by the internal forces and moments in the walls due to the increase in the stiffness of the 
coupled system by the connecting beams. Actually, the deformation of a pierced shear wall subjected to lateral 
loading is not confined to its plane. Studies considering in-plane, out-of-plane and torsional deformation in the 
investigation of pierced shear walls are called 3-D shear wall analyses. In 3-D pierced shear walls, both the 
flexural and torsional behaviours under external loading have to be taken into account in the anaysis. 

All of the dynamic analysis in the literature on perforated shear walls concern themselves with planar ones [1]. 
No study has been made, to the knowledge of the authors, concerning the dynamic anaysis of 3-D pierced shear 
walls, so far. 

The present analyses is based on the Continuous Connection Method (CCM), in conjunction with Vlasov�s 
theory of thin-walled beams, following an approach similar to the one used by Tso and Biswas [2]. In the CCM, 
the connecting beams are assumed to have the same properties and spacing along the entire height of the wall. 
The discrete system of connecting beams is replaced by continuous laminae of equivalent stiffness [3]. The CCM 
has been employed in the analysis and the compatibility equation has been written at the mid-point of the 
connecting beams. For this purpose, the connecting beams have been replaced by an equivalent layered medium. 
The warping of the piers due to their twist, as well as their bending, has been considered in obtaining the 
displacements. Vlasov�s thin walled beam has been used for this purpose [4]. 

2 Free Vibration Analysis 
Free vibration analysis of non-planar coupled shear walls in conjunction with the CCM consists of two steps. In 
the first step, the structure is considered as a discrete system of lumped masses at the selected levels along the 
height of the structure (see Figure 1).  

Lumped masses are concentrated at the center of the whole cross-sectional area of the structure. Since each point 
has three degrees of freedom, in X, Y and Teta directions, the dimension of mass matrix is equal to 3nx3n, where 
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n represents the number of masses. However, the mass matrix elements associated with the rotational degrees of 
freedom will be zero because of the assumption that the mass is lumped at nodes which have no rotational 
inertia. Thus, the lumped-mass matrix is a diagonal matrix which has zero diagonal elements for the rotational 
degrees of freedom. 

 

Figure 1. Non-planar coupled shear wall and its lumped mass model 
 

The mass matrix of the coupled shear wall was found as a diagonal matrix employing a lumped mass approach. 
To explain this procedure, the top, bottom and each height at which there is a stiffening beam and/or change of 
wall thickness will be called ��ends�� and the section between any two consecutive ends will be called a 
��region��. Each region is divided into suitable numbers of parts with corresponding amounts of masses. 

After the determination of the mass matrix, the second step is the determination of the stiffness matrix of the 
structure for the degrees of freedom chosen during the determination of the mass matrix. This procedure is 
carried out by applying two horizontal unit forces in the directions of X and Y axes and one unit moment about Z 
axis at every height with a lumped mass. For every one of these loadings, a solution is carried out making use of 
the CCM and writing down the compatibility equation for the vertical displacements at the midpoints of the 
connecting beams. Then, employing the equilibrium equations, the corresponding displacements are obtained. 
The displacements of the points where the lumped masses are located are determined by using the rigid floor 
diaphragm assumption. Thus, each unit loading gives one column of the flexibility matrix as the displacements at 
the points where the lumped masses are. Hence, the analysis for the three loading cases for one floor will suffice 
to introduce the complete solution procedure for the flexibility matrix. The stiffness matrix of the structure will 
be determined by taking the inverse of the flexibility matrix. Substituting the mass and stiffness matrices, thus 
obtained, in the equations of motion for free vibration, the system of equations for the problem in hand is 
obtained. 

The basic assumptions of the CCM for non-planar coupled shear walls can be summarized as follows:  

* The geometric and material properties are constant throughout each region i along the height. 

* The discrete set of connecting beams with bending stiffness EIci in region i are replaced by an equivalent 
continuous connecting medium of flexural rigidity EIci/hi per unit length in the vertical direction. 

* Vlasov�s theory for thin-walled beams of open section is valid for each pier. 

* The outline of a transverse section of the coupled shear wall at a floor level remains unchanged in plan 
(due to the rigid diaphragm assumption for floors).  

* The discrete shear forces in the connecting beams in region i are replaced by an equivalent continuous 
shear flow function qi, per unit length in the vertical direction along the mid-points of the connecting 
laminae. 
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* The torsional stiffness of the connecting beams is neglected. 

* The walls and beams are assumed to be linearly elastic. 

* Bernoulli-Navier hypothesis is assumed to be valid for the connecting beams. 

The axial force in each pier is found by writing down the vertical force equilibrium equation for the part of one 
pier above any horizontal cross-section as 
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A cut through the points of contra-flexure of laminae exposes the shear flow qi. The vertical force equilibrium of 
a dz element of one pier yields the relation  

 ii Tq ′−= ( )n1,2,...,i =

where a prime denotes differentiation with respect to z.  

2.1 Compatibility Equation 

While obtaining the compatibility equations, all connecting laminae are cut through their mid-points, O′ , which 
are the points of zero moment. 

The vertical displacement due to bending can be obtained as the product of the slope at the section considered 
and the distance of point O′ from the respective neutral axis. In addition, vertical displacement arises, also, due 
to the twisting of the piers, and is equal to the value of the twist at the section considered, times the sectorial 
area, ω , at point O′ .

For the compatibility of displacements, the relative vertical displacements of the cut ends must be equal to zero. 
Hence, 
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and 1ω and 2ω are the sectorial areas at points on the left and right sides of the cut for piers 1 and 2, 

respectively. iu , iv and iθ are the global displacements ( n1,2,...,i = ). Differentiating this equation with 
respect to z and letting 
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The successive terms in (3) represent the contributions of the bending of the piers about the principal axes, the 
contribution of the twisting of the piers, the axial deformation of the piers, the bending deformation in the 
laminae and the shearing deformation in the piers, respectively. 
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2.2. Equilibrium Equations 

The coordinate system and the positive directions of the internal bending moments acting on the different 
components of the shear wall are adapted as shown vectorially in Figure 2. 

 
Figure 2. Internal bending moments 

 

These internal moments, along with the couple produced by the axial force, Ti, balance the external bending 
moments 

iEXM and 
iEYM . For the equilibrium of the moments about the X and Y axes can be written as, 

aTIEvIEuIEM iiYiXYiYEYi
+′′−′′+′′= θθ ,

bTIEvIEuIEM iiXiXiXYEX i
+′′+′′+′′= θθ ,

where 

21 yyY III += ,
21 xxX III +=  ,

21 xyxyXY III +=  

22112211 xysxysxsxsX IyIyIxIxI −−+=θ , 22112211 xysxysysysY IxIxIyIyI −−+=θ

In these equations, 
jyI and 

jxI are the second moments of area of the cross-sections, and 
jxyI is the product of 

inertia of pier j (j=1, 2) about axes parallel to the global axes and passing through the centroids.  

In order to obtain the bimoment equilibrium equation, the coupled shear wall will be cut through by a horizontal 
plane such that an upper part is isolated from the lower part of the structure. Equating the external bimoment, 

iEB , to the internal resisting bimoments, the bimoment equilibrium equations for all regions of the structure can 
be written as follows: 
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where, iB is the resultant bimoment about point O′ , which is due to the resistance offered by the piers and iB is 
the resultant bimoment due to the additional bending moments and bimoments about the vertical axis through 
point O′ . ωI is the sectorial moments of inertia of the two piers. 

In order to obtain the twisting moment equilibrium equation, the coupled shear wall will be cut through by a 
horizontal plane such that an upper free body diagram is isolated from the rest of the structure. Equating the 
external twisting moment, 

iEtM , to the internal resisting moments, the twisting moment equilibrium equation 
for all regions of the structure can be written as follows: 
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the shear forces. Expressions iiJG θ′ (i=1,2,�,n) are the St. Venant twisting moments and expressions ii
IE θω ′′′−

(i=1,2,�,n) are the additional twisting moments due to the non-uniform warping of the piers along the height. 

Using the compatibility equation (3) and the four equilibrium equations (8), (9), (12), and (14), the 4n unknowns 
of the problem, namely iu , iv , iθ , and iT , can be found under the applied loadings 

iEXM ,
iEYM ,

iEB , and 

iEtM . The elimination of iu , iv and iθ from equations (7,8,9,12,14) yields the following differential equation 

for iT :
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Thus, the governing differential equation of the analysis of non-planar stiffened coupled shear walls is found as 
equation (15). When this equation is used for a unit loading,

iEXM and
iEYM are the external bending moments 

and 
iEtM is the external twisting moment about the respective global axes for the particular unit loading. 

Equation (15) is written for each region separately. However, in this context when the unit load is applied at an 
internal point of a region, it divides that region into two new regions. The system of Macaulay�s brackets should 
be understood, here and in the sequel, as 

( )nn zzzz '' −=− and   1' 0 =− zz for     'zz >

0' =− nzz and   0' 0 =− zz for     'zz ≤

Thus, in the general form, the external effects 
iEXM ,

iEYM and 
iEtM for any unit loading is found, 

using the following expressions for the particular case: 
1

zHM pEXi
−=

1
zHM pEYi

−=

( ) ( ) 1

PXPYEt ddM
i

+−=

where, PXd and PYd are the moment arms of the components of the unit force from point O′ .
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in accordance with the system of Macaulay�s brackets, we can rewrite 
iEXM and 

iEYM for the part beneath the 
unit load as follows: 

( )zHM pEXi
−= 1−=′

iEXM 0=′′
iEXM

( )zHM pEYi
−= 1−=′

iEYM 0=′′
iEYM

Hence, for the part above the unit load, 
iEXM ,

iEYM and 
iEtM are equal to zero. 

Substituting expressions (19) in (15) and solving the resulting differential equation, Ti is found as follows: 
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To determine the integration constants D1i to D4i in the single fourth order differential equation, the boundary 
conditions at the top, bottom and between each pair of consecutive regions are employed. Substituting them in 
expression (22), the general solution for Ti ( )n,1,2,i �=  can be found using (8,9,14) as follows: 
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where boundary conditions and the equivalence of the horizontal displacements and the respective slopes for 
every pair of neighbouring regions at their common boundary (z = zi) are used to determine the integration 
constants.  

Having determined the displacements for unit loadings at each and every one of the levels of lumped masses, the 
flexibility matrix, and thereby, the stiffness matrix of the structure can be found. Finally, the circular frequencies 
are determined from the following standard frequency equation for the lumped mass system: 

02 =− MK ω

where ω is the circular frequency, M is the mass matrix and K is the stiffness matrix of the structure. The 
respective modal vectors, is , are found by substituting each and every circular frequency, ωi, in the following 
equation at a time: 
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3 Numerical application  
The example problem compares the free vibration analyses of 3-D pierced shear walls with changes in cross-
section using the present program and the SAP2000 [5] structural analysis program. 
In this example, the stories above the fourth are of a different cross-section than the ones below as shown in 
Figure 3. 
The total height of the shear wall is 24 m, the storey height is 3 m, the thickness is 0.3 m, the height of the 
connecting beams is 0.5 m and the elasticity and shear moduli of the structure are E = 2.85⋅ 106 kN/m2 and G = 
1055556 kN/m2, respectively. 

 

Figure 3. 3-D view and cross-sectional views of the structure 

According to the lumped mass assumption, the lumped masses, which were calculated by the computer program, 
were concentrated at the center of the whole cross-sectional area of the structure. 
Table 1 compares the natural frequencies found by the program prepared in the present work and the SAP2000 
structural analysis program, expressing the percentage differences. 

 
Present Study   (CCM) SAP2000   (Frame Method) 

Mode 
Natural Frequencies Natural Frequencies 

% difference

1 1,07270 1,07366 0,09 
2 1,61807 1,60347 0,91 
3 4,01622 4,01831 0,05 
4 5,88496 5,85470 0,52 
5 10,68451 10,63805 0,44 
6 14,19554 14,14731 0,34 
7 19,27886 19,19478 0,44 
8 25,67233 25,44843 0,88 
9 31,10287 30,91459 0,61 

10 38,98560 38,45470 1,38 
11 46,79325 46,35447 0,95 
12 53,47172 52,34942 2,14 
13 65,79978 64,26048 2,40 
14 69,71574 67,71944 2,95 
15 91,63290 88,45926 3,59 
16 107,58726 103,86768 3,58 

Table 1: The natural frequencies found by the CCM and SAP2000 
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Mode shapes in X and Y directions were compared by normalizing each with respect to the values at the top of 
the structure. 
Figure 4 presents the mode shapes of the shear wall, found by the present program and the SAP2000 structural 
analysis program, both in the same table for the same quantity. 
 

Figure 4. Comparison of third, fifth and seventh mode shapes found by both the present study and SAP2000 

4 Acknowledgement 
This work has been supported by the Cukurova University Research Fund under Grant MMF2004D14. 

5 References 
[1] O. Aksogan, M. Bikce, E. Emsen, H.M. Arslan �A Simplified Dynamic Analysis of Multi-bay Stiffened 

Coupled Shear Walls�, Advances in Engineering Software, 38, 552�560, 2007. 
[2] W.K. Tso, J.K. Biswas, �General Analysis of Non-planar Coupled Shear Walls�, Journal of Structural 

Division, ASCE, 100(ST5), 365-380, 1973. 
[3] R. Rosman, �Approximate Analysis of Shear Walls Subject to Lateral Loads�, Journal of the American 

Concrete Institute, 61(6), 717-732, 1964. 
[4] V.Z. Vlasov, �Thin-walled Elastic Beam�, 1-2, U. S. Department of Commerce, Washington, D.C., 

USA, 1961.  
[5] I.A.Macleod, H.M. Hosny, �Frame Analysis of Shear Wall Cores�, Journal of Structural Division, 

ASCE, 103(10), 2037-2045, 1977. 
[6] E.L. Wilson, �SAP2000 Integrated Finite Element Analysis and Design of Structures�, Computers and 

Structures, Inc., USA, 1997. 
 

0

6

12

18 

24

30 

36

42 

48 

-1,0 -0,5 0,0 0,5 1,0 

H
ei

gh
t(

m
)

SAP 2000  

CCM      

Mode 3
Y direction 

0

6

12 

18 

24 

30 

36 

42 

48 

-1,0 -0,5 0,0 0,5 1,0 

Mode 3 

X Direction 

0

6

12 

18 

24 

30 

36 

42 

48

-1,0 -0,5 0,0 0,5 1,0 

Mode 5 

Y Direction 

0

6

12 

18 

24 

30 

36 

42 

48 

-1,5 -1,0 -0,5 0,0 0,5 1,0 

Mode 5 

X Direction 

0

6

12 

18 

24 

30 

36 

42 

48 

-1,5 -0,5 0,5 1,5 

H
ei

gh
t(

m
)

Mode 7 

0

6

12

18 

24 

30 

36

42 

48

-3,0 -1,0 3,0 

Mode 7 

 X Direction 

1,0

Y Direction 

2008

I. Troch, F. Breitenecker, eds.      ISBN 978-3-901608-35-3


