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Abstract. Modeling metrics and algorithms that assist the development of dynamic system models 
are essential for efficient use of modeling and simulation in everyday engineering tasks.  Various 
modeling techniques have been proposed in order to make the modeling procedure more system-
atic and easier to use by inexperienced modelers.  The authors, in particular, previously developed 
an energy-based modeling metric called “element activity” that was implemented in the Model 
Order Reduction Algorithm (MORA).  The motivation underlying the development of the element 
activity and MORA was to address model reduction of nonlinear systems.  However, the purpose 
of this paper is to apply MORA to linear systems in order to obtain additional clarifying interpreta-
tions.  Given the linearity and superposition property of the models in hand, the steady state re-
sponse to sinusoidal inputs is considered.  For this condition, the element activity can be calculated 
analytically for any given excitation frequency and, thus, a series of reduced models that depend 
on the excitation frequency can be generated.  This methodology is applied to a linear quarter car 
model and the reduced models generated by MORA are compared to the results obtained from a 
frequency-based model deduction algorithm.  The results show that MORA generates a series of 
frequency dependant proper models that are similar to those explicitly generated by frequency 
metrics.  Thus, MORA, an energy-based model reduction technique appropriate for nonlinear sys-
tems, can also generate frequency-based reduced models with more refined reduction as compared 
to frequency-based metrics. 

1 Introduction 
Modeling and simulation have yet to achieve wide utilization as commonplace engineering tools.  Part of the 
reason for this is that current modeling and simulation techniques are inadequate.  One drawback is that they 
require sophisticated users who are often not domain experts and thus lack the ability to effectively utilize the 
model and simulation tools to uncover the important design trade-offs.  Another is that models are often large 
and complicated, with a large number of parameters, making the physical interpretation of the model outputs, 
even by domain experts, difficult.  This is particularly true when “unnecessary” features are included in the 
model.  It is the premise of this work that more effective use of modeling and simulation necessitates the need 
for proper models, that is, models with physically meaningful states and parameters that are of necessary but 
sufficient complexity to meet the engineer’s objective. 

A variety of algorithms have been developed and implemented to help automate the production of proper dy-
namic system models.  Wilson and Stein developed the Model Order Deduction Algorithm (MODA) that de-
duces the needed system model complexity from subsystem models of variable complexity using a frequency-
based metric, [11].  Additional work on deduction algorithms for generating proper models has been reported in 
order to extend the applicability of the algorithm, [1] [2] [10].  These algorithms have been implemented and 
demonstrated in a computer automated modeling environment, [9]. 

In an attempt to overcome the limitations of the frequency-based metrics the authors introduced a new model 
reduction technique that also generates proper models, [4].  This approach uses an energy-based metric (element 
activity) that in general can be applied to nonlinear systems and considers the importance of all energetic ele-
ments (generalized inductance, capacitance and resistance) in the model, [5] [6] [7].  The contribution of each 
element in the model is ranked according to the energy metric under specific excitation.  Elements with small 
contribution are eliminated from the model to produce a reduced model.  The element activity metric has more 
flexibility from the existing frequency-based metrics that address the issue of model complexity by only adding 
compliant elements, leaving the importance of inertial and resistive unresolved.  In contrast, the activity metric 
considers the importance of all energetic elements, and therefore, the significance of all energy elements in the 
model can be described.  It is the purpose of this paper to apply this metric to linear systems in order to compare 
the complexity of the proper models produced by MORA over a specified frequency versus proper models pro-
duced by MODA. 

This paper is organized as follows: first background about the energy-based metric is provided in Section 2.  
Section 3 shows the application of the element activity to linear systems where the steady state response is con-
sidered.  Section 4 provides an illustrative example of a linear quarter car model, to demonstrate the generation 
of proper models of linear systems using the activity metric.  Finally, a discussion and set of conclusions are 
given in Sections 5 and 6, respectively. 

629

Proceedings MATHMOD 09 Vienna - Full Papers CD Volume



2 Background 
The authors’ original work on the energy-based metric for model reduction, [4], is briefly described here for 
convenience.  The main idea behind this model reduction technique is to evaluate the “element activity” of the 
individual energy elements of a full system model under a stereotypic set of input and initial conditions.  The 
activity of each energy element establishes a hierarchy for all the elements.  Those elements below a user-
defined threshold of acceptable level of activity are eliminated from the model, a reduced model is generated and 
a new set of governing differential equations is derived. 

2.1 Element Activity 
A measure of the power response of a dynamic system, which has physical meaning and a simple definition, is 
used to develop the modeling metric, element activity (or simply activity).  The element activity, A, is defined 
for any energy element as: 

 A = P(t)
0

�

� �dt  (1) 

where    P(t)  is the element power and � is the time over which the model has to predict the system behavior.  
The activity has units of energy, representing the amount of energy that flows in and out of the element over the 
given time �.  The energy that flows in and out of an element is a measure of how active this element is, i.e., how 
much energy passes through it, and consequently the quantity in Eq. (1) is termed activity. 

The activity is calculated for each energy element in a system based on the response.  In the case that the system 
is modeled using a bond graph formulation, the state equations are derived using the multiport bond graph repre-
sentation, [3] [8], and the state equations have the general form: 

 �x = F(x,u),    x(0) = x
o

 (2) 

where: 

x � �n is the state vector, and n is the number of independent states, 

u � �m is the input vector, and m is the number of inputs, 

F : �n ��m � �n is a nonlinear continuous vector function, 
xo are the initial conditions of the states. 

Appropriate outputs are defined in order to calculate the power of each element in the model using the constitu-
tive law of each element.  For convenience, the outputs are selected to be flow, effort, and flow for inertial, com-
pliant, and resistive elements, respectively.  The output vector for this set of variables has the form: 
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where y � �k  and 
    fI , eC

, and f
R

 are vectors of size 
   kI

, k
C
, and k

R
 respectively.  The variables 

   kI
, k

C
, and k

R
 

represent the number of inertial, compliant and resistive elements, respectively, and total number of energy ele-
ments in the system is 

   k = k
I

+ k
C

+k
R

.  For the output variables given Eq. (3) and using the multiport bond 
graph representation, the output equations can be written as: 

    y = H(x,u)  (4) 

where     H : �n ��m � �k  is a nonlinear vector function.  Given these variables, the required efforts or flows for 
calculating the element power are computed from their constitutive law as shown below: 

 

      

I: f = �
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(p)� p = �

I
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 (5) 

where 
   �I

,�
C
,�

R
 are known functions. 
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Finally, the power needed for calculating the activity in Eq. (1) is computed from Eq. (5) as: 
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I

= e � f = �f � �
� f
�

I

�1(f )( ) � f

C: P
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= e � f = e � �e � �
�e
�

c

�1(e)( )
R: P

R
= e � f = e ��

R
(e) = f ��

R

�1(f )

 (6) 

2.2 Activity Index 
The activity as defined in Eq. (1) is a measure of the absolute importance of an element as it represents the 
amount of energy that flows through the element over a given time period.  In order to obtain a relative measure 
of the importance, the element activity is compared to a quantity that represents the “overall activity” of the 
system.  This “overall activity” is defined as the sum of all the element activities of the system, is termed total 
activity (ATotal) and is given by: 

 
   
A

Total = A
i

i=1

k

�  (7) 

where Ai is the activity of the ith element given by Eq. (1).  Thus a normalized measure of element importance, 
called the element activity index or just activity index, is defined as: 

 AI
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A
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             i = 1,…,k  (8) 

The activity index, AIi, is calculated for each element in the model and represents the portion of the total system 
energy that flows through a specific element.  This calculation is typically performed on the results produced by 
numerical integration of the system state equations.  MORA then produces a reduced model by eliminating ele-
ments from the model based on their activity. 

3 Activity Analysis of Linear Systems 
The activity metric and MORA have been previously formulated for the general nonlinear case.  By restricting 
the use of MORA to linear systems, analytical expressions for the activity can be obtained.  The analysis is sim-
plified even more if, in addition to the linearity assumption, the system is assumed to have a single sinusoidal 
input, and only the steady state response is examined.  These assumptions are motivated from Fourier analysis 
where an arbitrary function can by decomposed into a series of harmonics.  Using this decomposition, the analy-
sis is first carried out for a single input sinusoidal excitation under steady state conditions.  Then, the effects of 
each harmonic are superposed, using the superposition principle, to get the aggregate response of the system 
caused by a general input u(t).  Furthermore, the superposition principle can also be used in the case that the 
system has more than one input.  The response for each input is separately calculated, and then, the individual 
responses are superposed.  Consequently, any dynamic response of a linear system can be calculated using the 
superposition principle and the response of a single input single frequency excitation.  Therefore, the generality 
of the analysis is maintained even if the previous assumptions are made. 

The same analysis for calculating the activity (see Section 2.1) is performed for the case of a linear system.  In 
this case, the system has linear junction structure and linear constitutive laws, which yield linear time invariant 
state equations.  Therefore, for linear systems Eq. (2) and Eq. (4) can be written in the matrix form: 

 
  

�x = A � x + B � u
y = C � x + D � u

 (9) 

where A � �n�n , B � �n�m , C � �k�n , D � �k�m  are the constant state space matrices. 
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Furthermore, the constitutive laws of linear energy elements are given by: 
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where
  
z

I
, z

C
, z

R
 are known constants.  A vector, z, with all the constitutive law coefficients is introduced as 

shown below: 
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where z � �k , z
I
� �k

I , z
C
� �k

C , and z
R
� �k

R .  This vector is used later in the analysis to produce concise 
expressions. 

The linear constitutive laws are used to calculate the efforts and flows needed to compute the power.  Substitu-
tion of the linear constitutive laws of Eq. (10) into the general nonlinear expressions in Eq. (6) simplifies the 
calculation of the element power to: 

 

      

I: P
I

= e � f = z
I

� f � �f

C: P
C

= e � f = z
C

�e � �e

R: P
R

= e � f = z
R

� f
2

 (12) 

3.1 Single Input Sinusoidal Excitation of Frequency � 

The time response of the required effort and flow outputs, y(t), in Eq. (3) is computed in order to complete the 
calculation of the element power.  The system in Eq. (9) has m inputs, however, one input at a time is considered 
to simplify the analysis.  Recall that the superposition principle can be used to reconstruct the system response 
with all the inputs acting on the system at the same time.  In addition, the excitation for the jth input is assumed 
sinusoidal.  Therefore, the single excitation of the system can be described as: 

 
    
u

j
(t) =U

j
� sin(� � t)  (13) 

where Uj is the amplitude of the excitation and � is the excitation frequency.  The steady state response for the 
excitation in Eq. (13) is calculated using linear system analysis and the outputs are given by: 

 
      
y

ij
t,�( ) =U

j
�Y

ij
�( ) � sin � � t +�

ij
�( )( ),  i = 1,…,k ,  j = 1,…,m  (14) 

where: 

      

Y
ij

�( ) = G
ij
(j ��) ,  is the amplitude of the ith  output due to the j th  input

�
ij

�( ) = �G
ij
(j ��), is the phase shift of the ith  output due to the j th  input

G(s) = C � A� s � I( )�1

�B + D

 

The output, y
ij
(t,�)  in Eq. (14), is either an effort or a flow needed to calculate the power of each element in 

Eq. (12).  The element power can then be used to calculate the element activity.  However, to compute the activ-
ity, the upper bound of the integral in Eq. (1) must be determined first.  For this case, the periodicity feature of 
the response is exploited.  A periodic function repeats itself every T seconds, and therefore, a single period of 
this function contains the required information about the response.  Thus, the upper bound of the integral is set to 
the period, 

    T = 2� � , of the excitation.  The activity of the energy elements is calculated by substituting 
Eq. (14) into Eq. (12) and then by using the definition of the activity in Eq. (1).  These substitutions give the 
following expressions for the steady state activity for the different types of energy elements.  Note that the su-
perscript, ss, denotes the activity due to steady state response only. 
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After evaluating the integrals in Eq. (15) for a given input frequency �, the following results are obtained: 
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Next, the activity indices are calculated as defined in Eq. (8).  For the activities in Eq. (16) the activity indices 
become: 

 

AI
ij

ss �( ) =
2 � z

i
�Y

ij

2

2 z
i

�Y
ij

2

i=1

k
I

+k
C

� + �
�

z
i

�Y
ij

2

i=k
I

+k
C

+1

k

�
,   i = 1,…,k

I
+ k

C

AI
ij

ss �( ) =

�
�

� z
i

�Y
ij

2

2 z
i

�Y
ij

2

i=1

k
I

+k
C

� + �
�

z
i

�Y
ij

2

i=k
I

+k
C

+1

k

�
,   i = k

I
+ k

C
+ 1,…,k

 (17) 

The input amplitude, Uj, does not appear in any of the element activity indices, as it is shown in Eq. (17), since 
all element activities are proportional to the square of the amplitude. 

The above results for the activity index can be used by MORA to generate reduced models.  The generated re-
sults are only valid for a single input frequency and for only the jth system input.  The activity expressions in 
Eq. (16) are of little direct practical use since the assumed conditions usually do not exist in practice.  However, 
these expressions can be combined to generate a single model that is valid for a more general input.  A procedure 
for accomplishing this is presented in the next section. 

3.2 General Excitation 
The linear system, as originally defined in Eq. (9), can be excited by m inputs, which can be a general function 
of time.  The analysis of the activity in this case can be treated as a special case of the analysis, described in 
Section 2, where the state equations and constitutive laws are linear.  However, the results from the single input 
sinusoidal excitation can also be used to calculate the element activity.  To make the use of the previous results 
possible, the input must be decomposed into a series of harmonics. 

For a smooth and bounded input function, the Fourier theorem can be used to expand this function into an infi-
nite series (integral) of sine and cosine terms.  In addition, the cosine and sine terms can be combined to obtain a 
single amplitude and phase shift.  More specifically the jth input can be expanded as: 

 
    
u

j
t( ) = U

j
�( ) � sin � � t +�

j
�( )( )

0

�

� �d�  (18) 

In practice, this decomposition can be produced from measurements and usually the results are presented in the 
frequency domain rather than in the time domain.  For example, in the vehicle dynamics area, road measure-
ments are taken in order to provide realistic excitation to vehicle models.  These measurements are then analyzed 
using Fourier analysis and expressed in a frequency domain form such as the one in Eq. (18). 

Given the frequency decomposition, the element activity for the general input, uj(t), is calculated from the steady 
state activities as previously derived in Eq. (16).  The steady state activity in this case is a function of frequency, 
since the amplitudes of the sine terms of the Fourier expansion in Eq. (18), are a function of the frequency �.  
The input, uj(t), is equal to the integral of sine functions, therefore, the element activity due to this input should 
be the integral of the steady state activities for a given frequency, �.  This is expressed as: 

 
    
A

ij
= A

ij

ss �( )
0

�

� �d�,   i = 1,…,k  (19) 
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Substitution of the steady state activities from Eq. (16) into Eq. (19) gives the activities for the different types of 
energy elements: 
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 (20) 

The above results can be extended for the multi-input case.  The overall activity due to the system excitation by 
all the m inputs is the sum of the activities due to each input separately.  Therefore, the element activity is: 
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 (21) 

The results in Eq. (21) can be used to calculate the total activity and the element activity indices.  With the activ-
ity indices known, MORA can be applied to rank order the importance of each element in the model and then 
generate reduced models. 

4 Illustrative Example 
A quarter car model is selected as the linear system to which we apply MORA and compare the results to those 
obtained from MODA applied to the same system.  This model is chosen because it has been extensively used in 
the automotive literature and the frequency dependent properties of the system are well understood.  This exam-
ple is used to generate reduced models under a broadband excitation representing the road surface roughness.  
The model consists of the sprung mass, namely, the major mass supported by the suspension, and the unsprung 
mass, which includes the wheel and axle masses supported by the tire.  The suspension is modeled as a spring 
and a damper in parallel, which are connected to the unsprung mass.  The tire is also modeled as a spring and a 
damper in parallel, which transfer the road force to the unsprung mass (wheel hub).  The input to the system is 
the road profile that prescribes a velocity, 

  
V

r
t( ) , to the contact point of the tire with the road.  The system is 

composed of six ideal energy elements described by an equal number of parameters.  The bond graph model of 
the system is depicted in Figure 1 and the parameters are given in the Appendix. 
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Figure 1: Full quarter car model 

4.1 Broadband Frequency Excitation 
To generate a reduced model that is valid for an input with broad frequency content, the methodology described 
in the Section 3.2 is applied.  To calculate the element activity for a general input, the amplitude of the input 
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(
   
U

j
(�)  in Eq. (21)) as a function of frequency is also required.  In addition, the input is also assumed to have a 

finite bandwidth, 
  �b

, such that the reduced models can be compared with the models generated by the fre-
quency-based metrics, e.g., MODA.  Therefore, system input that is the road velocity is expanded as: 

 
    
V

r
t( ) = U

r
�( ) � sin � � t( )

0

�
b

� �d�  (22) 

The amplitude, U
r
�( ) , is usually defined from a specific input (i.e. road profile meter data), however, an input 

which is “equally weighted” for each frequency is used here.  The term “equally weighted” is considered in the 
context of power flow, since the activity metric is based on energy (power flow).  Therefore, the amplitude, 

   
U

r
�( ) , is defined such that the power flowing into the system is “equal” for all frequencies.  This assumption is 

made to achieve an equivalent excitation as the one used by MODA.  The power flowing into the system, in this 
example, is calculated as the product of the road velocity and the contact force implied to the road by the system.  
The road velocity is a prescribed sine function, and thus, the steady state response of contact force can be calcu-
lated from the model. 

 F
r

�,t( ) =U
r

�( ) �F
r

�( ) � sin � � t +�
r

�( )( )  (23) 

where F
r
�( )  is the steady state amplitude and �

r
�( )  the phase shift for an excitation of frequency �.  There-

fore, the power flowing into the system is: 
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�( )( )  (24) 

The power flowing into the system is “equally weighted” when amplitude of the power flow in Eq. (24) is con-
stant for all frequencies (for convenience it is set to one, see Figure 2), thus: 

 
    
U

r

2 �( ) �F
r
�( ) = 1  (25) 

� 

1

Ur
2 �( )� F r �( )

�b  
Figure 2: Frequency content of input power flow 

Therefore, the amplitude of the road velocity is given by: 

 

   

U
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�( ) = 1

F
r
�( )  (26) 

Finally, the substitution of Eq. (26) into Eq. (21) gives the activities of all the energy elements: 
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4.2 Activity Analysis and Model Reduction 
Using Eq. (27), the activities are calculated as a function of the road bandwidth.  The road bandwidth is varied 
from 0.1 rad/s to 10000 rad/s in order to include frequencies well below the low natural frequency (8 rad/s) and 
above the high natural frequency (76 rad/s).  The element activities and activity indices are shown in Figure 3.  
The element activities are monotonically increasing, since the integrands in the expressions in Eq. (27) are al-
ways positive.  Therefore, as the bandwidth increases, the activity increases too.  At low frequencies the most 
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active elements are the two masses (sprung and unsprung).  These elements handle the bulk of the energy flow 
induced into the system by the input.  As the bandwidth increases the activity of all the elements increases, and 
finally at frequencies beyond the second natural frequency all elements have almost the same activity. 
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Figure 3: Activity and Activity Indices 

MORA is then applied to generate reduced models.  Based on a 98% activity threshold (arbitrary threshold), the 
model complexity is determined as a function of the road bandwidth.  Figure 4 shows the range of frequencies 
over which each element is included in the reduced model according to MORA.  The y-axis represents each 
element, where the thick line defines the range of frequencies, over which the element should be included, while 
no line implies the range of frequencies over which the element should be eliminated.  The labels of the y-axis 
represent the names of the energy elements. 

Ms
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Mu

Ct

Bt

10-1 100 101 102 103 104
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Figure 4: Included elements, Threshold = 98% 

As shown in Figure 4, a low bandwidth excitation requires only the rigid body model with the two masses as the 
only elements included in the reduced model.  As the bandwidth increases up to 4.7 rad/s, the suspension stiff-
ness must also be included.  Just before the first natural frequency at 7.2 rad/s, the suspension damping is also 
added to the reduced model as its activity increases above the specified elimination threshold.  The tire stiffness 
is the next element included in the model before the second natural frequency (43.7 rad/s).  Eventually, at a 
bandwidth beyond the second natural frequency (288 rad/s), MORA does not eliminate any energy elements, 
and therefore, the reduced model is the same as the full model.  This is intuitive, because a rich input excites all 
system dynamics, and therefore, a model that includes all the dynamics of the system (full model) is needed to 
accurately predict the system behavior.  The reduced model complexity (number of included energy elements) 
and reduced bond graphs are also shown as a function of the input bandwidth in Figure 5. 
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Figure 5: Model complexity, Threshold = 98% 

4.3 Models deduced by MODA 
MODA is also used to deduce a series of proper models as a function of the input frequency.  A series of proper 
models are generated for a series of Frequency Range of Interests (FROI), in order to examine the required 
model complexity needed as a function of frequency.  MODA is used to generate a proper model for each FROI 
within the same frequency range used previously by MORA.  The results are shown in Figure 6 where the sys-
tem complexity along with the proper model bond graphs for the different frequencies are plotted.  In addition, 
Figure 6 shows the reduced models that MORA generates.  Note that the model complexity in Figure 6 is plotted 
against the road bandwidth, and therefore, the FROI is divided by 5 in order to convert the FROI into the road 
bandwidth.  This factor (5) is used in order to account for the proper model accuracy, [11]. 

Three different proper models are generated depending on the selected FROI.  For low frequencies, MODA 
suggests that the proper model is just the two masses rigidly connected, which is expected, since the system 
behaves like a rigid body for frequencies well below the fundamental natural frequency.  After the FROI is in-
creased beyond the first natural frequency (8/5 rad/s), the complexity is increased in order to include the suspen-
sion stiffness and damping.  The same model is valid up to the second natural frequency (76/5 rad/s) where the 
tire stiffness and damping are also included.  The same system model is valid for all FROIs above the second 
natural frequency. 
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Figure 6: Comparison of MORA with MODA 
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5 Discussion 

5.1 Implications of MORA applied to linear systems 
Efficiency: The properties of linear systems simplify the application of activity to determine the importance of 
energy elements in a model.  This makes MORA, which has been previously shown to be useful for nonlinear 
systems, to be an even more attractive algorithm for automating the creation of proper models of linear systems.  
The analytical expressions derived in this paper make activity calculations more efficient than computing the 
activities from numerical simulations of the full model as described in Section 2.  The only restriction is that the 
input can be expressed in a Fourier expansion series. 

Complexity vs. Bandwidth: MORA was developed to assess the importance of energy elements in a general 
nonlinear system model.  The assumption is that elements with low activity are of low importance to the accu-
racy of the model.  While the connection between activity and model accuracy has been shown anecdotally, and 
even shown to be related to the frequency content in the model, [6], the results in this paper show that for linear 
systems, activity is a function of frequency.  More specifically, Eq. (21) shows that as the frequency of excitation 
increases the activity of the model grows.  This result, while not being directly applicable to nonlinear systems, 
still provides a more solid foundation for the assumption that low activity appears to be related to high band-
width behavior of a system and, therefore, not very important to the behavior of the high energy, low frequency 
gross “motion” of a system.  

5.2 Comparison to MODA 
Algorithm Conservatism: In the illustrative example, MORA is compared with a model deduction algorithm, 
MODA.  For low bandwidths, the two algorithms generate the same model by including only the two masses of 
the system.  As the input bandwidth increases, MODA creates equivalent to more complicated models than 
MORA.  For example, MODA includes the suspension stiffness at a frequency five times smaller than the first 
natural frequency, whereas MORA includes it just before the first natural frequency.  The same phenomenon 
occurs for the tire stiffness, where MODA includes it at a frequency five times smaller than the second natural 
frequency, while MORA includes it just before the second natural frequency.  Thus for the example shown, 
MODA appears to be a more conservative algorithm, generating more complicated models than MORA.  The 
conservativeness of MODA is a consequence of the magnification coefficient used to determine the FROI (about 
5 times the input frequency).  The magnitude of this coefficient is selected to account for the model accuracy.  
Because no specific definition of accuracy is used by MORA, one could argue that neither MORA nor MODA is 
inherently more conservative.  It depends on the choice of the activity threshold versus the FROI coefficient. 

Equality of Assessment: MODA has a modal orientation to model complexity.  That is as more modes are used 
the larger the bandwidth of the model.  With finite segment models such as used in the example, more modes 
means adding two states as another capacitance (with sometimes a common flow resistance) and another induc-
tance to the model.  MORA does not have this orientation; it simply treats all energy elements strictly on the 
basis of their activity.  Thus, MORA can identify when resistance elements (independent of other elements) 
become important and need to be included in the model.  For example, in the illustrative example, the suspension 
damping (resistance) is included just before the first natural frequency.  The tire damping does not have a large 
contribution, and therefore, it is not included except at higher frequencies when it does become important. 

6 Summary and Conclusions 
A previously developed concept, an energy-based modeling metric called activity, is applied to linear systems to 
compare model complexity as a function of frequency.  It is shown that when considering the sinusoidal steady 
state response, the derivation of analytical expressions for the activity as a function of the input frequency is 
possible.  Furthermore, the activity due to a general system excitation (e.g., input with a given frequency content 
or bandwidth) can be computed based on the “steady state” activity and the Fourier expansion of the excitation.  
It is also shown that the activity varies with the frequency content of the excitation.  Thus, a previously pub-
lished algorithm, MORA, which is based on the activity metric, can generate a series of models.  This series of 
models are shown to be ordered such that as the model complexity increases the model is accurate over a wider 
frequency range.  These results are compared to those obtained using a previously published Model Order De-
duction Algorithm (MODA).  It is shown that MORA generates models of similar complexity to those generated 
by MODA for a given frequency range.  Finally, in contrast to MODA, MORA is shown to account equally for 
the contributions of all the energy elements to the total system response.  The results of this paper provide more 
insight into the nature of the reduced ordered models produced by MORA, and therefore, demonstrate that 
MORA is an even more useful tool than previously realized for the production of proper models of nonlinear 
systems.  Furthermore, it appears to have some advantages over MODA for the creation of proper linear system 
models. 
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9 Appendix 
Sprung Mass, Ms   

z
1

= 267 Kg 

Suspension Stiffness, Ks   
z

3
= 18,742 N/m 

Suspension Damping, Bs   
z

5
= 700 N·s/m 

Unsprung Mass, Mu   
z

2
= 36.6 Kg 

Tire Stiffness, Kt    
z

4
= 193,915 N/m 

Tire Damping, Bt 
  
z

6
= 200 N·s/m 
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