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Abstract. This paper presents a numerical algorithm for the solution of implicit differential equa-
tions. The algorithm is based the three stage Lobatto IIIC implicit Runge-Kutta method. A novel
feature of the algorithm is that the local truncation error is estimated via a third-order L-stable two-step
error estimator, which is more efficient than Richardson extrapolation. In that, the proposed algorithm
requires fewer Newton’s iterations to compute a solution to the differential equations and an error es-
timate, when compared to Richardson extrapolation. An implementation of the algorithm is used to
solve some benchmark test problems that involve index-3 differential-algebraic equations written in
stabilized index-1 form. We compare the performance our implementation with the MATLAB program
������, as well as the MATLAB program ����, which solves implicit differential equations using the
three stage Radau IIA method.

1 Introduction
This paper considers the numerical solution of the implicit differential equations (IDEs)

Φ(y, ẏ, t) = 0, (1)

where the scalar t is the time, y(t) ∈ Rn is the state, ẏ(t) ∈ Rn is the state derivative, and Φ(y, ẏ, t) ∈ Rn. It is
assumed that the initial conditions y(t0), ẏ(t0) at time t = t0 are consistent, i.e., Φ(y(t0), ẏ(t0), t0) = 0. It should
be clear that the formulation (1) can accommodate ordinary differential equations (ODEs), as well as differential-
algebraic equations (DAEs) [6].

A motivation for considering the implicit differential equations (1) is that the models of complex dynamic systems
can be written in this form. In fact, references [3] and [9] have shown that a Lagrangian approach to modeling
multidiscipline systems leads to a set of differential-algebraic equations. Moreover, in [4] it is shown that using
a coordinate partitioning technique to reduce the index of the DAEs leads to a system of implicit differential
equations that are index-1.

A number of algorithms have been developed for the solution of IDEs. Some specific implementations that are
based on the backward differentiation formula (BDF) include; DASSL [1], IDA [7], and ������ [12]. Numerical
solvers based on implicit Runge-Kutta methods include; ���� [3] and PSIDE [14]. The program ���� uses the
three stage Radau IIA method and is based on the code RADAU5 [6], with the local error estimator developed
in [13]. The program PSIDE uses the four stage Radau IIA method and utilizes a parallel iterative linear system
solver.

Recently, some researchers have shown that Lobatto IIIC implicit Runge-Kutta methods can be used to obtain
efficient numerical methods for the solution of ODEs and DAEs. For example, these methods are used in [2] to
simulate the behavior of multidiscipline dynamic systems, in [8] to solve index-2 DAEs, and in [11] to simulate
multibody dynamic systems.

Motivated by these successful applications, in this paper, we describe an implementation of the three stage Lobatto
IIIC method for the solution of the IDEs (1). The main contribution of this paper is the development of the two-
step error estimator formula which is believed to be new. In section 3 some index-3 DAEs are used to compare the
performance of the ������ algorithm with ���� and ������.

2 Local error estimation
Successful termination of the Newton’s iterations yields the numerical solution y(k+1) at time t(k+1). Before advanc-
ing the solution to the next time step, t(k+2), it is desirable to ensure that y(k+1) is a sufficiently accurate solution.
This requires that we compute an estimate of the local error in the numerical solution. In the numerical integra-
tion algorithm proposed here we compute the local error estimate using two different solutions to the differential
equations at t(k+1).

To illustrate how this is accomplished let y(k+1) be the numerical solution determined by one integration method,
and let ŷ(k+1) be the numerical solution determined by a second integration method. In both cases we assume that
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the initial condition is exact i.e., y(k) = ŷ(k) = y(t(k)). Now, if y(k+1) is determined by a method with consistency

of order p, and ŷ(k+1) is determined by a method with consistency of order p−1, then we have

y(t(k+1))− y(k+1) = Chp+1 +O(hp+2),

y(t(k+1))− ŷ(k+1) = Ĉhp +O(hp+1),

where C and Ĉ are constants that depend on the numerical method and the differential equation. Thus, an estimate
of the local error can be obtained as

η(k+1) = ‖y(k+1)− ŷ(k+1)‖= O(hp). (2)

In the following section we will use the Lobatto IIIC method to design an integration technique that yields a
solution y(k+1) with consistency of order p = 2s−2, and second solution ŷ(k+1) with consistency of order p−1.

2.1 A two-step error estimator

Consider the integration of the IDEs (1) from t(k) to t(k+1) in two steps with increments h/2. Thus, we determine

y(k+1) by applying an s-stage implicit Runge-Kutta method from t(k) to t(k) +h/2, and from t(k) +h/2 to t(k) +h =
t(k+1). In which case y(k+1) is given by

y(k+1) = y(k) +
h
2

s

∑
i=1

biY ′i +
h
2

s

∑
i=1

biY ′s+i, (3)

where Y ′1, Y ′2, · · · ,Y ′s are the stage derivatives computed in the interval [t(k), t(k) + h/2], and Y ′s+1, Y ′s+2, · · ·, Y ′2s are

the stage derivatives computed in the interval [t(k) +h/2, t(k+1)]. Using this approach with the Lobatto IIIC methods
it can be shown that (3) has consistency of order p = 2s−2 when applied to ODEs [6].

To obtain an estimate of the local error we can compute a second solution to the differential equations at t(k+1)

using the formula

ŷ(k+1) = y(k) +h
2s

∑
i=1

b̂iY ′i , (4)

where the coefficients b̂i, i = 1,2, · · · ,2s are determined so that (4) has consistency of order p− 1. Note that (4)
uses the same stage derivatives that are used to compute y(k+1).

The composite implicit Runge-Kutta method described by (3) and (4) can be put in the form of the Butcher tableau

c̄ Ā
b̄T

b̂T
, Ā =

1

2

[
A 0

ebT A

]
, b̄ =

1

2

[
b
b

]
, c̄ =

1

2

[
c

c+ e

]
,

where e = [1,1, · · · ,1]T ∈ Rs. Written in this form we see that (4) can be viewed as an embedded formula in a
2s-stage Runge-Kutta method.

Next we select the coefficients b̂ so that (4) satisfies certain consistency and stability properties. The design
methodology follows a similar approach used in [5] to determined error estimators for Radau IIA methods. Here
we will focus on the development of coefficients for the three stage Lobatto IIIC method.

If we apply the method (4) to the scalar ODE ẏ = λy, then we can show that ŷ(k+1) = R(z)y(k), where z = λh, and
R(z) is called the stability function. Moreover,

R(z) = 1+ zb̂T (I− zĀ)−1e

= 1+ zb̂T e+ z2b̂T Āe+ z3b̂T Ā2e+ z4b̂T Ā3e+ z5b̂T Ā4e+ z6b̂T Ā5e+O(z7)

=
det(I− zĀ+ zeb̂T )

det(I− zĀ)
=

P(z)
Q(z)

. (5)

Here, I is the identity matrix, and P(z) and Q(z) are polynomials of degree 2s.

We also note that the stability function approximates the exact solution to the ODE ẏ = λy, i.e., R(z) ≈ ez. In the
case of the three stage Lobatto IIIC method we would like (4) to have consistency of order p−1 = 3. This implies
that the terms in a Taylor series expansion of R(z) must coincide with with the exact solution ez up to order z3.

Hence, from (5) we have that the coefficients b̂ must satisfy the three conditions

b̂T e = 1, b̂T Āe =
1

2!
, and b̂T Ā2e =

1

3!
. (6)
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If these conditions are met then the stability function can be written as

R(z) = 1+ z+
z2

2!
+

z3

3!
+ρ4z4 +ρ5z5 +ρ6z6 +O(z7), (7)

where ρ4 = b̂T Ā3e, ρ5 = b̂T Ā4e and ρ6 = b̂T Ā5e. Using (5) and (7) we can show that

P(z) = R(z)Q(z) = R(z)det(I− zĀ)

= 1+
z
4

+
z2

64
+

(
ρ4− 1

24

)
z4 +

(
ρ5− 3

4
ρ4 +

35

1536

)
z5 +

(
ρ6− 3

4
ρ5 +

17

64
ρ4− 77

12288

)
z6. (8)

Thus far we have specified three conditions that must be satisfied by the six terms in b̂, i.e., the conditions in
(6). We can specify three other conditions as follows. (i) Set the coefficient of z6 in P(z) equal to zero, i.e.,
ρ6− 3

4 ρ5 + 17
64 ρ4− 77

12288 = 0; (ii) Set the coefficient of z5 in P(z) equal to a free parameter β , i.e., ρ5− 3
4 ρ4 + 35

1536 =
β ; (iii) Set the coefficient of z4 in P(z) equal to a free parameter α , i.e., ρ4− 1

24 = α .

Note that the condition (i) ensures that R(∞) = 0, which is a necessary condition for L-stability. The free parameters
α and β will be selected to ensure that the method (4) is A-stable, and the error estimate is a good approximation
at least for ODE ẏ = λy.

The six conditions in (6), (i), (ii) and (iii) lead to the linear equation

b̂T
[

e, Āe, Ā2e,
(

Ā5− 3

4
Ā4 +

17

64
Ā3

)
e,

(
Ā4− 3

4
Ā3

)
e, Ā3e

]
=

[
1,

1

2!
,

1

3!
,

77

12288
, β − 35

1536
, α +

1

24

]
.

The solution to this equation is

b̂ =

⎡⎢⎢⎢⎢⎢⎣
1/12

192(β −35/1536)−24(α +1/24)+137/24
−1344(β −35/1536)−24(α +1/24)−709/24

768(β −35/1536)+96(α +1/24)+163/12
576(β −35/1536)−72(α +1/24)+395/24
−192(β −35/1536)+24(α +1/24)−127/24

⎤⎥⎥⎥⎥⎥⎦ , (9)

and the Taylor series expansion of the resultant stability function is

R(z) = 1+ z+
z2

2!
+

z3

3!
+

24α +1

4!
z4 +

1536β +1152α +13

1536
z5 +

9216β +3648α +19

12288
z6 +O(z7). (10)

Note that selecting α = 0 and β = 0 yields b̂ = b̄ which is not useful for error estimation. Interestingly however,
we note that by selecting α = 0 and β = 1/5!−13/1536, the stability function, R(z), then approximates ez up to
the term z5 which is two orders higher that we hoped for. Moreover, this choice of α and β ensures that (4) is
A-stable. A-stability and the fact that R(∞) = 0 implies that (4) is also L-stable. This choice for α and β gives the

coefficients b̂T = [1/12, 37/120, 31/120, −1/60, 31/120, 13/120].

3 Test problems
Several test problems were used for comparing the capabilities of the solver ������. Here we report partial results
for four of these problems, i.e., (i) a quick-return mechanism [3]; (ii) an electromechanical system [9]; (iii) the car
axis problem [10]; and (iv) the Andrews’ squeezing mechanism problem [10]. All these problems involve index-3
DAEs that are written in stabilized index-1 form using the technique described in [4].

Solutions for each example problem were computed using the three solvers ����, ������, and ���	
� over a
range of tolerance values (refer to [10] for details). The resulting numerical computation statistics were used to
produce work-precision diagrams in a similar fashion as in [6]. Computations were performed using MATLAB

7.0.1.15 (R14) on a 1.60 GHz Pentium IV processor.

Figure 1 shows the CPU time versus desired solution tolerance for these four test problems. It can be seen that at
modest tolerances (< 10−6) all of the solvers require about the same amount of time to compute solutions to the
problems. At higher tolerances ���� and ���	
� perform better than ������. This is to be expected since ����
and ���	
� are 5-th order methods and ������ is a 4-th order method.

It should be noted that in both ������ and ���� many parts of the code are written to emphasize clarity rather than
speed of execution. Nonetheless, both of these programs have been found to be competitive with ���	
� when
considering the time required to solve a variety of ODEs and DAEs.

The computer codes used to obtain the results reported here can be found at

���
�������
�������������������.
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Figure 1: CPU time versus tolerance
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