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Abstract. A model for an industrial robot with discrete controls is presented. Transitions between dif-
ferent control levels are not idealized by step functions, but described more realistically by continuous
transition profiles. During transition time, no control commands are accepted by the respective control.
This leads to a control problem with reduced dimension of the control vector during response times. A
Maximum Principle based approach is used to calculate optimal trajectories with high accuracy. The
original optimal control problem is embedded into a continuous problem of higher dimension. By this,
optimality conditions are not only evaluated at discrete times, but the system dynamics and sensitivity
properties on the full solution interval are coupled to the switching points of the system. The extended
problem of optimal control is transformed into a multi-point boundary value problem on a fixed time
grid and of piecewise varying dimension. By recursive modeling techniques, the formulation of the
boundary value problem is automated to a great extent. An advanced multiple shooting method provides
significantly improved stability of the numerical solution process. Time-optimal three-dimensional tra-
jectories are calculated for a three-link example robot. With discrete controls properly determined, a
similar performance of the robotic manipulator is achieved as with continuous controls. However, the
solution structure is more complicated than in the continuous case, especially if state constraints are
active.

1 Introduction
The use of hydraulic or pneumatic actuators in industrial robots allows to generate high specific forces in a compact
design. A further simplification of the manipulator design becomes possible by the restriction to only discrete levels
for some or all of the control variables (= torques) involved. This is the case, if e.g. magnetic valves are installed. It
is no longer necessary to generate continuous pressure profiles with high accuracy, only exact switching times have
to be realized. The price to be paid for a simpler electromechanical design might be a loss in overall performance.

It is the aim of this article to set up a mathematical model for such an industrial robot and carefully investigate the
effects of discrete controls compared with the continuous case.

2 System modeling
2.1 Manipulator model

The three-dimensional rigid body model of the manipulator reflects the main kinematical and dynamical properties.
Non-rigid body effects like joint friction or motor models are neglected in this paper, but fit seamlessly into the
framework presented here. The example manipulator is modeled as a chain of n rigid links connected by revolute
joints. Joint angles are denoted by θi, the corresponding actuator torques by Ti, i = 1, . . . ,n. The links are numbered
starting from the immobile base of the manipulator (link 0).

Each revolute joint i is controlled via the joint angle θi. The joint variablesΘ := (θ1, . . . ,θn)T ∈ IRn form a complete
set of minimum coordinates.

The equations of motion (i.e. the dynamic equations) of an n-link rigid body manipulator in the joint space are
calculated by a modified version [9] of the recursive Newton-Euler algorithm (cf. e.g. [10, 15, 17, 18]) in an
implicit form (inverse dynamics):

First, link velocities and accelerations are computed from link 1 to link n (outward recursion) applying Newton-
Euler formulae to each link. In a second step, joint forces and torques are computed from link n to link 1 (inward
recursion). For each set of input values (Θ,Θ̇,Θ̈), the output of the recursions are M(Θ), h(Θ,Θ̇) and a set of
torques

T = T (Θ,Θ̇,Θ̈) = M(Θ)Θ̈+h(Θ,Θ̇) , T := (T1, . . . ,Tn)T ∈ IRn . (1)

M(Θ)∈ IRn×n is the manipulator joint space inertia matrix. It is both symmetric and positive definite (and therefore
always invertible) and is composed of those terms which multiply Θ̈. The function h(Θ,Θ̇)∈ IRn contains all terms
which depend on the joint angles or the joint velocities, as this is the case with terms caused by gravitational,
centrifugal and Coriolis forces. A further subdivision of the effects modeled in h(Θ,Θ̇) is not necessary for the
numerical treatment [7].
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For optimal control applications, efficient access to accurate and detailed derivative information is crucial. The
first derivatives of the rigid body system

∂M(Θ)
∂θ j

,
∂h(Θ,Θ̇)
∂θ j

,
∂h(Θ,Θ̇)
∂ θ̇ j

and the corresponding derivatives of the torques

∂T
∂θ j

=
∂T (Θ,Θ̇,Θ̈)

∂θ j
=
∂M(Θ)
∂θ j

Θ̈+
∂h(Θ,Θ̇)
∂θ j

, j = 1, . . . ,n

∂T
∂ θ̇ j

=
∂T (Θ,Θ̇,Θ̈)

∂ θ̇ j
=
∂h(Θ,Θ̇)
∂ θ̇ j

, j = 1, . . . ,n

are obtained by differentiating the Newton-Euler recursion with respect to θ j, θ̇ j. For each joint j, this differentia-
tion process again results in an outward and an inward recursion. Quantities previously calculated by the original
Newton-Euler algorithm are reused. Higher-order derivatives are calculated analogously [9].

With the vector of the state variables x(t) := (Θ,Θ̇)T ∈ IR2n and the vector of the linear controls u := T ∈ IRn, the
equations of motion (1) may be rearranged in a normalized form

ẋ(t) =
(

Θ̇(t)
M−1(Θ(t))

(
u(t)−h(Θ(t),Θ̇(t))

) )
. (2)

The explicit form (2) is especially suited for numerical calculations. M−1(Θ(t)) is never computed explicitly, but
Θ̈(t) solves the linear system

M(Θ(t))Θ̈(t) = u(t)−h(Θ(t),Θ̇(t)) .

2.2 Control and state variable inequality constraints

The basic control inequality constraints are of interval type

Ti(t) ∈ [Ti,min,Ti,max] ∀ t ∈ [τ0,τ f ] , i = 1, . . .n . (3)

τ0 is the initial time and τ f the terminal time for the manipulator motion.

In case of discrete controls, additional and severe restrictions are imposed on the control variables Ti:

Ti ∈ Ti := {Ti,1, . . . ,Ti,κi} , i = 1, . . . ,n , 3 ≤ κi ≤ 10 ∧ Ti,min =: Ti,1 < Ti,2 < .. . < Ti,κi := Ti,max (4)

with κi set in advance. Only a finite number of discrete levels of torque is allowed for control. Between the
different levels switching is possible. The set of possible controls is no longer convex.

In reality, an ideal step control cannot be realized. The manipulator’s motion is rather characterized by a sequence
of directly controlled and uncontrolled (or indirectly controlled) arcs.

On directly controlled arcs, Ti ∈Ti ∀ i ∈ {1, . . . ,n}. When a command is given at an intermediate time τs ∈ ]τ0,τ f [
to change the control level of a single Tj , j ∈ {1, . . . ,n} from Tj,s− to Tj,s+ with Tj,s−,Tj,s+ ∈T j ∧ Tj,s− �= Tj,s+,
this change cannot be performed immediately. The torque function is modeled to follow a given profile function
S j ∈ C 2([0,Δτ j]× [Tj,min,Tj,max]2, IR) during a characteristic response time Δτ j

Tj(t) = S j(t − τs,Tj,s−,Tj,s+) ∀ t ∈ [τs,τs +Δτ j] ∩ [τ0,τ f ] . (5)

The function S j can be measured, but not altered during operation. It depends on the the control level Tj,s− prior
to τs and the selected level Tj,s+ afterwards. Due to over-/undershooting, the basic control inequality constraints
[Tj,min,Tj,max] cannot be applied to Tj(t), t ∈ [τs,τs +Δτ j].

During the time interval [τs,τs +Δτ j], no control command can be given to the control variable Tj; the set of
available controls is reduced by Tj and so is the dimension of the control vector.

Minimum requirements for a valid profile model function S j are

S j(0,Tj,s−,Tj,s+) = Tj,s− , S j(Δτ j,Tj,s−,Tj,s+) = Tj,s+ .

A higher order of differentiability of the control function Tj(t) can be achieved by the additional conditions

∂
∂ξ

S j(ξ ,Tj,s−,Tj,s+)
∣∣∣∣
ξ=0

= 0,
∂
∂ξ

S j(ξ ,Tj,s−,Tj,s+)
∣∣∣∣
ξ=Δτ j

= 0,

∂ 2

∂ξ 2
S j(ξ ,Tj,s−,Tj,s+)

∣∣∣∣
ξ=0

= 0,
∂ 2

∂ξ 2
S j(ξ ,Tj,s−,Tj,s+)

∣∣∣∣
ξ=Δτ j

= 0,

. . .
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which can be realized e.g. by a proper choice of the spline functions modeling the profile function S j.

In addition, multiple state inequality constraints of the type

C(x) ≤ 0 with C ∈ C μ(IR2n, IR) , μ ≥ 2 ,

have to be fulfilled.

2.3 Performance index and boundary conditions

Without loss of generality, an objective function of Mayer type is chosen

I :=Φ
(

x(τ+
0 ),x(τ−f )

)
→ min!

For point-to-point trajectories, the model is completed by boundary conditions, e.g. joint angles and angular
velocities at initial time τ0 and at final time τF are prescribed:

Θ(τ0) =Θ0 , Θ̇(τ0) = Θ̇0 , Θ(τF) =ΘF , Θ̇(τF) = Θ̇F . (6)

3 Optimal control of the manipulator
3.1 Demonstrator problem in infinite-dimensional control spaces

To avoid merely technical discussions and to concentrate on the mathematical core of the matter, a demonstrator
problem with reduced complexity is analyzed in detail.

Mathematically, the demonstrator problem can be stated as follows:

Find a state function x : [τ0,τ f ] −→ IR2n

and a control function u : [τ0,τ f ] −→ IRn,

which minimize an objective function of Mayer type

Φ
(

x(τ+
0 ),x(τ−f )

)
(7)

subject to

ẋ = f (x,u) ,
0 = x(τ0)− x0 ,

uk(t) ∈ [u−k ,u+
k ], k = 1, . . . ,n .

⎫⎬⎭ (8)

x is assumed to be an element of space W 1,∞([τ0,τ f ], IR2n) of the uniformly Lipschitz-continuous functions under

the norm ‖x‖1,∞ := ‖x(τ0)‖2 +‖ẋ‖∞; ‖ · ‖2 denotes the Euclidean norm and ‖ẋ‖∞ := ess sup{‖ẋ(t)‖2

∣∣t ∈ [τ0,τ f ]}.
u is assumed to be an element of space L∞([τ0,τ f ], IRp) of the bounded functions under the norm ‖u‖∞.(
W 1,∞([τ0,τ f ], IR2n),‖ · ‖1,∞

)
and

(
L∞([τ0,τ f ], IRp),‖ · ‖∞

)
are Banach spaces.

τ0 is the initial time and τ f the final time. Let be Ū1 ⊆ IR2n and Ū2 ⊆ IRn open sets such that the optimal solution

(x�,u�) ∈ Ū := Ū1 ×Ū2 ∀ t ∈ [τ0,τ f ]. By construction, f ∈ C ∞(Ū , IR2n).

3.2 Modified demonstrator problem in finite-dimensional control spaces

This problem is a modification of (7,8). Now a special control history is assumed for the optimal solution: All
controls except one are constant in [τ0,τ f ]. The remaining control has exactly one switching point τs ∈ ]τ0,τ f −Δτ[,
at which the control starts a transition between two constant control levels.

Problem definition. The modified demonstrator problem in finite-dimensional control spaces reads as follows:

Find a state function x : [τ0,τ f ] −→ IR2n

and n+1 control parameters {u0,1, . . . ,u0,n,u1,n} ⊂ IR ,

which minimize an objective function of Mayer type

Φ
(

x(τ+
0 ),x(τ−f )

)
(9)
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subject to

ẋ = f (x,u) with

u(t) =

⎧⎨⎩ (u0,1, . . . ,u0,n−1,u0,n)
T ∀ t ∈ [τ0,τs[ ,

(u0,1, . . . ,u0,n−1,S(t − τs,u0,n,u1,n))T ∀ t ∈ [τs,τs +Δτ[ ,
(u0,1, . . . ,u0,n−1,u1,n)T ∀ t ∈ [τs +Δτ,τ f [ ,

0 = x(τ0)− x0 ,

0 = S(0+,u0,n,u1,n)−u0,n ,

0 = S(Δτ−,u0,n,u1,n)−u1,n ,

u0,n,u1,n ∈ [u−n ,u+
n ], u0,k ∈ [u−k ,u+

k ], k = 1, . . . ,n−1 .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(10)

x is assumed to be an element of space C 1([τ0,τ f ], IR2n) of the continuously differentiable functions, u by con-

struction is an element of space C 0([τ0,τ f ], IRn) of the continuous functions.

‖ϕ‖C k([τ0,τ f ],IRn) := ∑n
j=1∑

k
ν=0 maxt∈[τ0,τ f ]

∣∣∣ϕ(ν)
j (t)

∣∣∣ defines a norm ∀ ϕ = (ϕ1, . . . ,ϕn)T ∈ C k([τ0,τ f ], IRn).(
C 1([τ0,τ f ], IR2n),‖ · ‖C 1([τ0,τ f ],IR2n)

)
and

(
C 0([τ0,τ f ], IRn),‖ · ‖C 0([τ0,τ f ],IRn)

)
are Banach spaces.

Δτ is the characteristic response time and τs as well as τs +Δτ are intermediate times with interior point conditions.
Let the open sets Ū1 ⊆ IR2n and Ū2 ⊆ IRn be chosen such that also for the optimal solution (x��,u��) of the modified
problem in finite-dimensional control spaces holds: (x��,u��) ∈ Ū := Ū1 × Ū2 ∀ t ∈ [τ0,τ f ]. By construction,

f ∈ C ∞(Ū , IR2n) (from (2)) and S ∈ C 2([0,Δτ]× [u−n ,u+
n ]× [u−n ,u+

n ], IR) (from spline interpolation). As usual we
define x(τ±j ) := limε→0,ε>0 x(τ j ± ε).
Because the profile function S explicitly depends on t, the demonstrator problem is non-autonomous. It can be
transformed into an autonomous problems by defining the time t as a new and additional state variable.

Control problems with free final time τ f can be transformed into problems with fixed final time by introducing the
new independent variable s with s := t/τ f , s ∈ [0,1] , and the new state variable τ f with τ̇ f = 0 [12]. Bolza and
Lagrange problems can be converted into Mayer problems of type (9) by standard transformations [3, 6].

Embedding into a continuous problem. Because of the additional conditions on u(t) in (10), the complete
control structure is fixed by choosing the interior time τs and the n + 1 control parameters u0,1, . . . ,u0,n,u1,n. The
control space has a finite dimension of n+2 in contrast to the infinite-dimensional case, in which n control functions
uk(t) ∈ IR , k = 1, . . . ,n, have to be determined ∀ t ∈ [τ0,τ f ].

With the constraints u0,n,u1,n ∈ [u−n ,u+
n ], u0,k ∈ [u−k ,u+

k ], k = 1, . . . ,n−1, from (10), the set of admissible control
parameters is convex.

To obtain an unconstrained problem, the control functions are transformed

uk → wk with uk(t) =: u−k +(u+
k −u−k )sin2 wk(t) ∀ t ∈ [τ0,τ f ] , k = 1, . . . ,n−1 , (11)

un(t) =: u−n +(u+
n −u−n )sin2 wn(t) ∀ t ∈ [τ0,τs[∪ [τs +Δτ,τ f ] . (12)

In the next step, the derivatives of the control functions wk(t) are chosen as new controls, thus transforming
the original controls wk(t) into state variables. The original state and the new control variables are in intervals
combined into a new state vector

z :=
(

x
w

)
: [τ0,τs[ ∪ [τs +Δτ,τ f ] → IR2n × IRn ∧ z :=

⎛⎝ x
w̃
un

⎞⎠ : [τs,τs +Δτ[→ IR2n × IRn

with w̃ := (w1, . . . ,wn−1)T and ũ := (u1, . . . ,un−1)T . The extended right hand side of the system of differential
equations f̄ : IR2n × IRn × IR → IR2n × IRn is defined by

f̄ (z(t), t) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(
f (x(t),u(w(t)))

0n

)
∀ t ∈ [τ0,τs[∪ [τs +Δτ,τ f ] ,⎛⎜⎜⎝

f (x(t),u(w(t)))
0n−1

∂
∂ t

S
(
t − τs,un(wn(τ−s )),un(wn((τs +Δτ)+)

)
⎞⎟⎟⎠ ∀ t ∈ [τs,τs +Δτ[

(13)
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with the abbreviation 0m := (0, . . . ,0)T ∈ IRm, m∈ IN. If all the original controls are from finite-dimensional spaces,
no controls are left after the transformation and the optimal control problem is converted into a special problem of
the calculus of variations, which is controlled only by the proper choice of the interior point conditions. The case
of a mixture of finite- and infinite-dimensional controls is treated analogously.

To get rid of the non-standard expressions wn(τ−s ) and wn((τs +Δτ)+) in (13), two new variables A(t), B(t) are
defined on [τs,τs + Δτ[ by the differential equations Ȧ = 0, Ḃ = 0 and the interior point conditions A(τ+

s ) =
un(wn(τ−s )), B((τs +Δτ)−) = un(wn((τs +Δτ)+)).

Together with the interior point conditions from (10)

0 = x(τ0)− x0 ,

0 = S(0+,A(τ+
s ),B((τs +Δτ)−))−un(wn(τ−s )) ,

0 = S(Δτ−,A(τ+
s ),B((τs +Δτ)−))−un(wn((τs +Δτ)+)) ,

and the continuity conditions for x and w̃, an equivalent continuous optimal control problem is completely defined.

Transformation into a boundary value problem. The optimal control problem is transformed in a well-known
manner (see e.g. [3]) into a multi-point boundary value problem for a system of ordinary differential equations
(MPBVP). For the solution of MPBVP, very efficient numerical algorithms exist [5]. Here the transformation into
an autonomous two-point boundary problem is preferred to avoid case differentiations in the analytical treatment
and to apply the minimum principle directly.

The state variables are redefined in intervals

x|[τ0,τs[ → y1 , x|[τs,τs+Δτ[ → y2 , x|[τs+Δτ,τ f ] → y3 ,

w̃|[τ0,τs[ → y4 , w̃|[τs,τs+Δτ[ → y5 , w̃|[τs+Δτ,τ f ] → y6 ,

wn|[τ0,τs[ → y7 , un|[τs,τs+Δτ[ → y8 , wn|[τs+Δτ,τ f ] → y9

and the time subintervals are transformed to the fixed time interval ξ ∈ [0,1] by

ξ1 :=
t − τ0

τs − τ0
∈ [0,1[ for t ∈ [τ0,τs[ ⇒ d

dt
=

1

τs − τ0

d

dξ1
,

ξ2 :=
t − τs

Δτ
∈ [0,1[ for t ∈ [τs,τs +Δτ[ ⇒ d

dt
=

1

Δτ
d

dξ2
,

ξ3 :=
t − τs −Δτ
τ f − τs −Δτ ∈ [0,1] for t ∈ [τs +Δτ,τ f ] ⇒ d

dt
=

1

τ f − τs −Δτ
d

dξ3
,

ξi → ξ for i = 1,2,3 .

This yields the equivalent optimal control problem with the cost function

I =Φ(y1(0),y3(1))

and the system of differential equations and boundary conditions

ẏ1 =
d

dξ
y1 = (τs − τ0) f (y1, ũ(y4),un(y7)) , y1(0) = x0 ,

ẏ2 = Δτ f (y2, ũ(y5),y8) , y1(1) = y2(0) ,
ẏ3 = (τ f − τs −Δτ) f (y3, ũ(y6),un(y9)) , y2(1) = y3(0) ,
ẏ4 = 0 ,

ẏ5 = 0 , y4(1) = y5(0) ,
ẏ6 = 0 , y5(1) = y6(0) ,
ẏ7 = 0 ,

ẏ8 = Δτ
∂
∂ t

S(Δτ ·ρ,A,B) , un(y7(1)) = y8(0) ,
ẏ9 = 0 , y8(1) = un(y9(0)) ,
Ȧ = 0 , A(0) = un(y7(1)) ,
Ḃ = 0 , B(1) = un(y9(0)) ,
τ̇s = 0 ,
ρ̇ = 1 , ρ(0) = 0 .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(14)

No interior point conditions occur in this system.
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With z̄(t) :=
(
yT

1 ,yT
2 , . . . ,y9,A,B,τs,ρ

)T ∈ IR9n+4, the Hamiltonian has the following form

H(z̄,λ ) := λ T ˙̄z

= λ T
y1
· (τs − τ0) f (y1, ũ(y4),un(y7))+λT

y2
·Δτ f (y2, ũ(y5),y8)

+ λ T
y3
· (τ f − τs −Δτ) f (y3, ũ(y6),un(y9))+λy8

Δτ
∂
∂ t

S(Δτ ·ρ ,A,B)+λρ . (15)

The subscript of each adjoint variable λ refers to the respective state variable.

The boundary and interior point conditions are coupled to the objective function Φ by Lagrangian multipliers
ν1,ν2,ν3 ∈ IR2n, ν4,ν5 ∈ IRn−1, ν6, . . . ,ν10 ∈ IR

g := Φ(y1(0),y3(1))
+ νT

1 (y1(0)− x0)+νT
2 (y1(1)− y2(0))+νT

3 (y2(1)− y3(0))
+ νT

4 (y4(1)− y5(0))+νT
5 (y5(1)− y6(0))+ν6(un(y7(1))− y8(0)))

+ ν7(y8(1)−un(y9(0)))+ν8(A(0)−un(y7(1)))+ν9(B(1)−un(y9(0)))+ν10ρ(0) . (16)

The differential equations for the adjoint variables λ are obtained from λ̇ = −Hz̄(z̄,λ ) and read as

λ̇y1
= −λ T

y1
(τs − τ0) fy1

(y1, ũ(y4),un(y7))
λ̇y2

= −λT
y2
Δτ fy2

(y2, ũ(y5),y8)
λ̇y3

= −λT
y3

(τ f − τs −Δτ) fy3
(y3, ũ(y6),un(y9))

λ̇y4
= −λ T

y1
2(τs − τ0) fũ(y4)(y1, ũ(y4),un(y7))(y+

4 − y−4 )siny4 cosy4

λ̇y5
= −λ T

y2
2Δτ fũ(y5)(y2, ũ(y5),y8)(y+

5 − y−5 )siny5 cosy5

λ̇y6
= −λ T

y3
2(τ f − τs −Δτ) fũ(y6)(y3, ũ(y6),un(y9))(y+

6 − y−6 )siny6 cosy6

λ̇y7
= −λT

y1
2(τs − τ0) fun(y7)(y1, ũ(y4),un(y7))(u+

n −u−n )siny7 cosy7

λ̇y8
= −λT

y2
Δτ fy8

(y2, ũ(y5),y8)
λ̇y9

= −λT
y3

2(τ f − τs −Δτ) fun(y9)(y3, ũ(y6),un(y9))(u+
n −u−n )siny9 cosy9

λ̇A = −λy8
Δτ

∂ 2

∂ t∂A
S(Δτ ·ρ ,A,B)

λ̇B = −λy8
Δτ

∂ 2

∂ t∂B
S(Δτ ·ρ ,A,B)

λ̇τs = −λT
y1
· f (y1, ũ(y4),un(y7))+λT

y3
· f (y3, ũ(y6),un(y9))

λ̇ρ = −λy8
Δτ2 ∂ 2

∂ t∂σ
S(σ ,A,B)|σ=Δτ·ρ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(17)

Eq. (17) is the shortened form of e.g.

λ̇y4,k = −2(τs − τ0)
(
λy1,1, . . . ,λy1,2n

)
⎛⎜⎜⎜⎜⎝

∂ f1

∂uk
...

∂ f2n

∂uk

⎞⎟⎟⎟⎟⎠(y1,u1, . . .un−1,un(y9)) |ũ=ũ(y4) ·

·(u+
k −u−k )sin(y4,k)cos(y4,k), k = 1, . . . ,n−1 .

In addition, the missing boundary conditions are obtained from the first variation of the extended objective function

Ĩ := g+
∫ 1

0

(
H(z̄,λ )−λT ˙̄z

)
dt .

The variation yields the additional conditions

λy4
(0) = 0 λy7

(0) = 0
λτs(0) = 0 λB(0) = 0
λy6

(1) = 0 λy9
(1) = 0

λτs(1) = 0 λA(1) = 0
λρ(1) = 0

λy2
(0)−λy1

(1) = 0 λy3
(0)−λy2

(1) = 0
λy5

(0)−λy4
(1) = 0 λy6

(0)−λy5
(1) = 0

∂Φ
∂y3(1)

−λy3
(1) = 0

(u+
n −u−n )(λy8

(1)+λB(1))sin(2y9(0))−λy9
(0) = 0

(u+
n −u−n )(λy8

(0)+λA(0))sin(2y7(1))−λy7
(1) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(18)

297

Proceedings MATHMOD 09 Vienna - Full Papers CD Volume



(18) together with (14, 17) complete the boundary value problem. The backward transformation to a MPBVP is
straightforward.

Remarks. The embedding approach developed above is especially attractive in case of a mixture of finite- and
infinite-dimensional controls.

Modifying and extending the basic ideas of a proof outlined in [13, 6, 5] for piecewise constant controls, the fol-
lowing property can be shown: The embedding approach is comparable to the direct application of algorithms for
nonlinear optimization to (9,10) regarding the computational effort, if the derivatives in the direct approach are
calculated with high accuracy. The exact proof is rather lengthy. Compared with nonlinear optimization, point-
wise relations between the adjoint variables are derived here in addition and the system dynamics and sensitivity
properties on the total time interval are coupled to the switching points of the system via the adjoint variables. All
this information is used to eliminate suboptimal solutions.

3.3 Active constraints in case of finite-dimensional control spaces

The demonstrator system is also used to investigate the properties of solutions subject to state inequality constraints.
The results can be directly generalized.

Without loss of generality, a state constraint C(x) ≤ 0 is assumed to be active on the interval [τ1,τ2] ⊂ [τ0,τs[, i.e.

C(x) = 0 ∀ t ∈ [τ1,τ2] . (19)

Because of (10), the locally unique optimal solution

x(t;τ0,x(τ+
0 ),u01, . . . ,u0n)

of (9, 10) on [τ0,τs[ depends on the initial values (τ0,x(τ+
0 )) and the n parameters u01, . . . ,u0n that characterize the

optimal constant controls. Insertion into (19) yields a system of nonlinear equations

C(x(t;τ0,x(τ+
0 ),u01, . . . ,u0n)) = 0 ∀ t ∈ [τ1,τ2] . (20)

If (20) is evaluated at more than n time instances t and especially at infinitely many times t within [τ1,τ2], in
general the resulting nonlinear system for the calculation of the n control parameters is overdetermined and cannot
be solved exactly. This contradicts the original assumption. For the constraint C(x) ≤ 0, therefore only contact
points τc are possible. Because of the differentiability assumptions on (9, 10) and because the controls are supposed
to be constant in [τ0,τs[ , contact points τc ∈ ]τ0,τs[ are touch points.

The line of argument given above can be analogously applied to the subintervals [τs,τs +Δτ[ and [τs +Δτ,τ f ] as
well as to phase constraints C(x,u) ≤ 0. Another consequence is, that – again in general – not more than n contact
points are possible in the subinterval [τ0,τs[.

If τc coincides with τ0, τs, τs +Δτ or τ f , the conditions

C(x(τc)) = 0 ,

d

dt
C(x(t))

∣∣∣∣
t=τc

= Cx(x(τc))T f (x(τc),u(τc)) = 0 .

are added to the interior point conditions in (14) at t = τc.

If τc does not coincide with τ0, τs, τs + Δτ or τ f , the classical solution procedure [14] is not applicable here:
Because no control is left in the system described by (14), the constraint qualification [11] is violated.

Let now be τc ∈ ]τ0,τs[. To overcome the problem mentioned above, τc is defined as an additional node that
subdivides ]τ0,τs[ into two new intervals. Here the following interior point conditions hold

x(τ−c ) = x(τ+
c ) , (21)

w(τ−c ) = w(τ+
c ) , (22)

C(x(τc)) = 0 , (23)

d

dt
C(x(t))

∣∣∣∣
t=τc

= Cx(x(τc))T f (x(τc),u(τc)) = 0 . (24)

Application of the generalized first order necessary conditions (first variation of Ĩ) analogously to Sect. 3.2 leads
to a numerically stable formulation of the missing interior point conditions for the touch point τc.
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3.4 Estimation of the control structure

The problem analyzed so far has the following control structure:

The interval [τ0,τ f ] is subdivided by

τ0 < τ1 < τ1 +Δτ < τ2 < τ2 +Δτ < .. . < τp < τp +Δτ < τp+1 ≡ τ f , p ∈ IN . (25)

The control functions are constant on every subinterval

uk(t) = u〈i〉k ∈ IR ∀ t ∈ [τi +Δτ,τi+1[ and uk(t) = u〈0〉k ∈ IR ∀ t ∈ [τ0,τ1[ , i = 1, . . . , p , k = 1, . . . ,n . (26)

During the time period [τi,τi +Δτ[ , i = 1, . . . , p , some controls remain constant and others switch from one value
to another. The switching process is not instantaneous, but modeled by given profile functions Sik.

Optimal values for u〈i〉k ∈ [u−k ,u+
k ] and optimal switching times τi can be computed using the formalism set up in

Sect. 3.2-3.3.

In many technical applications, the freedom of choice of the controls is further restricted. The piecewise constant

controls u〈i〉k can no longer be optimized within the full range [u−k ,u+
k ], but have to be selected from a finite set of

given control levels

u〈i〉k ∈ {
uk,1, . . . ,uk,κk

}
, k = 1, . . . ,n , κk ∈ IN , i = 0, . . . , p, (27)

with uk,1 := u−k , uk,κk := u+
k . The set of possible controls is non-convex. Because the positions of the nodes τi and

the values of the state variables x(τi) are still subject to (nonlinear) optimization, the result is a constrained and
nonlinear mixed-integer optimization problem. It can be embedded into the formalism of the calculus of variations
by the methods developed in Sect. 3.2-3.3. The only modification is the inclusion of additional interior point
conditions

uk(τ+
i ) = uk, j , k = 1, . . . ,n , j ∈ {1, . . . ,κk} , i = 0, . . . , p . (28)

While the vectors u and w respectively remain constant on a single interval, a large number of tiny intervals with
different control structures may occur along the solution trajectory. As soon as the solution structure – i.e. only the
sequence of the different control levels, but not the interval lengths (τi+1 −τi) – is known, the associated boundary
value problem is completely defined and can be solved numerically [5].

To obtain the required information on the solution structure, the associated infinite-dimensional problem – e.g.
(7,8) in case of the demonstrator problem – without the restrictions (26, 28) on the controls is solved first. The
optimal solution (x�(t),u�(t)) is then used as a reference solution for the finite-dimensional problem.

The comparison between (x�(t),u�(t)) and the solution (x��(t),u��(t)) of the finite-dimensional problem is moti-
vated by Bellman’s recursion [1, 2], which is exemplified at the following special optimal control problem of the
Lagrange type:

Find a piecewise differentiable state function x ∈ C 1
c

(
[τ0,τ f ], IR2n) and a piecewise continuous control function

u ∈ C 0
p
(
[τ0,τ f ],U ⊆ IRp), which minimize

I(u) :=
∫ τ f

τ0

L(x(t),u(t), t)dt

subject to the conditions ẋ(t) = f (x(t),u(t)) , x(τ0) = x0 . Let L,F be sufficiently often differentiable and let an
optimal solution (x�(t),u�(t)) exist. Let V (x̂, t̂) be defined as the minimum of I(u), if the initial values (x0,τ0) are
replaced by (x̂, t̂). Let h > 0 be sufficiently small and define x(s), s ∈ [t̂, t̂ + h], as the solution of the initial value
problem ẋ(s) = f (x(s),u(s)) , x(t̂) = x̂ . Then one gets [1, 2]

V (x̂, t̂) = min
u(s)∈U

t̂≤s≤t̂+h

[∫ t̂+h

t̂
L(x(s),u(s))ds+V (x(t̂ +h), t̂ +h)

]
.

♦
This motivates a strategy that keeps x��(t) as close as possible to x�(t) by choosing the control u��(t) as close as
possible to u�(t) in such a way that u�(t) and u��(t) produce the same integral effect on the system in finite time
intervals.

Application to the example problem with x�(t̂) = x��(t̂) yields for t ∈ [t̂, t̂ +h]

x��(t)− x�(t) .=
∫ t

t̂
( fx(x�,u�)(x�� − x�)+ fu(x�,u�)(u�� −u�)) ds ,
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∫ t̂+h

t̂
(L(x��(s),u��(s))−L(x�(s),u�(s))) ds

.=
∫ t̂+h

t̂
(Lx(x�,u�)(x�� − x�)+Lx(u�,u�)(u�� −u�)) ds .

Because mechanical systems react with a certain inertia to control inputs, one may assume

‖x�(t)− x��(t)‖� ‖u�(t)−u��(t)‖ ∀ t ∈ [t̂, t̂ +h] .

With this assumption, the primary focus is on minimizing the quantity∣∣∣∣∫ t̂+h

t̂
(u�(s)−u��(s))ds

∣∣∣∣ . (29)

This idea is directly transferred into a numerical algorithm. It is outlined here for the case of one piecewise
constant control u(t) which can take only discrete values. The situation is sketched in Fig. 1; u1 and u2 denote
two consecutive discrete levels. Starting with t1 and t2, for which u�(t1) = u��(t1) = u1, u�(t2) = u��(t2) = u2 and

u1

t1 t2 t

u2

u(t)

u*(t)

τ1
∼

τ2
∼

τ3
∼

u1

t1 t2 t

u2

u(t)

u*(t)

τ1
∼

Figure 1: Successive estimation of the control structure.

u�(t) ∈ ]u1,u2[ ∀ t ∈ ]t1, t2[, an intermediate time τ̃1 is calculated (Fig. 1, left), such that∫ τ̃1

t1
(u�(ξ )−u1) dξ =

∫ τ̃1

t2
(u2 −u�(ξ )) dξ . (30)

Each newly created subinterval is further subdivided analogously (Fig. 1, right), e.g. τ̃2 is determined by∫ τ̃2

t1
(u�(ξ )−u1) dξ =

∫ τ̃2

τ̃1

(u2 −u�(ξ )) dξ . (31)

The procedure resembles the adaptive Simpson method in numerical integration [16]. The τ̃ j are then rearranged
in increasing size and form a subset of {τi | i = 1, . . . , m̃}.

Remarks. After each refinement step of the control structure, an optimal control problem is solved to adjust
the τi with high precision before the next subdivison step. Therefore, small inaccuracies in the determination of
the estimates for the τi by the algorithm sketched above play no role at all for the final accuracy. They only affect
the convergence rate of the numerical solution of that intermediate control problem. The important lesson learned
from Bellman’s recursion is, that the optimal control has to be approximated by a repeated switching between the
two nearest permissible control levels enclosing the optimal solution x�(t) of the infinite-dimensional problem.

The permanent comparison between x�(t) and the solution of the finite-dimensional problem for the current switch-
ing structure provides an excellent and reliable stopping criterion for further refinements.

3.5 Remarks concerning the numerical treatment

The differential equations for the adjoint variables are calculated recursively and simultaneously with the recursive
calculation of the equations of motion by a Newton-Euler type algorithm. Even higher-order derivatives intro-
duced by state constraints are generated recursively. For an efficient numerical treatment, structural information
about the robotic system is used to a great extent. Nonlinear state and control constraints are treated without any
simplification by transforming them into linear systems. These topics are discussed in detail in [7, 8, 9].
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Figure 2: Infinite-dimensional reference problem: Link angles θi and link velocities θ̇i vs. time for the example problem.

The numerical treatment of the multi-point boundary value problems is by the advanced version JANUS [5] of the
multiple shooting method [4]. It provides an improved stability of the solution process and an increased rate of
convergence. One of the key features of JANUS is the efficient and accurate handling of a large number of interior
points without increasing the overall size of the multiple shooting system. A detailed description is given in [5].

4 Numerical example
As an example, a time-optimal three-dimensional trajectory subject to one state constraint is calculated for a three-
link manipulator (n = p = 3). The selection of the ratios of the maximum joint torques is non-standard.

Unit Variable Link 1 Link 2 Link 3 Link 4

Mass [kg] m 1.00 1.00 1.00 1.00

Px 0.50 0.50 0.00 0.00
Center of mass [m] Py 0.00 0.00 0.50 0.00

Pz 0.50 0.00 0.00 0.00

Ixx 1.00 1.00 1.00 0.00

Moments of inertia [kg m2/12] Iyy 1.00 1.00 1.00 4.00

Izz 1.00 1.00 1.00 0.00

[m] a 0.00 0.50 1.00 0.00
Denavit-Hartenberg [rad] α π π

2 0.00 −π
2

parameters [m] d −1.00 0.00 0.00 1.00
[rad] θ θ1 θ2 θ3 − π

2 π

Table 1: Data for the example manipulator.

The manipulator geometry and the definition of the link systems are defined in detail in [9]. Important manipulator
data and the Denavit-Hartenberg parameters are summarized in Table 1.

Motor torques are limited by

−10 [Nm] ≤ T1 ≤ 10 [Nm] ,
−20 [Nm] ≤ T2 ≤ 20 [Nm] ,
−20 [Nm] ≤ T3 ≤ 20 [Nm] .

The angular velocity of link 3 ist limited by

θ̇3 ≥−5.4 [rad/s] .

In the infinite-dimensional case, this is a state constraint of order 1.
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For the fixed initial and final conditions

θ1(0) = 0.0 , θ1(t f ) = 3.1415927 ,
θ2(0) = −0.052359877 , θ2(t f ) = −1.3962633 ,
θ3(0) = −0.139626340 , θ3(t f ) = −1.0471975 ,
θ̇1(0) = 0.0 , θ̇1(t f ) = 0.0 ,
θ̇2(0) = 0.0 , θ̇2(t f ) = 0.0 ,
θ̇3(0) = 0.0 , θ̇3(t f ) = 0.0 ,

the time-optimal point-to-point reference trajectory of the infinite-dimensional optimal control problem is calcu-
lated first. A final time of t f = 1.38 [s] (more ”exact” for comparison purposes: t f = 1.37975) is achieved. The

state constraint is fulfilled with a rel. precision of 10−9.

Important properties of the solution like the time behaviour of the link angles, link velocities, motor torques,
switching functions and the trajectory in space are depicted in Fig. 2-4.

In case of discrete control levels, the major part of the solution remains unchanged. Bang-bang control already
dominates the time-optimal problem in the infinite-dimensional case. In the example problem, ten discrete control
levels are permitted for each control. Δτ := 20 [ms] and the profile functions are linear. For u1 and u2, only two
levels each are active. Four levels are active for u3. With ten subintervals for u3 and two for u1 and u2 each,
the final time of the optimal solution is by a factor of 1.00084 greater than for the infinite-dimensional reference
solution. The results are shown in Fig. 5. Five touch points at the state constraint are observed. The order of the
state constraint is not decisive in this case. Visually no difference can be detected between the trajectory in case of
discrete controls and that of the infinite-dimensional reference solution.

5 Conclusions
A Maximum Principle based approach is used to calculate optimal trajectories with high accuracy for manipula-
tors with discrete controls. Transitions between different control levels are not idealized by step functions, but
described more realistically by continuous transition profiles. The original optimal control problem is embedded
into a piecewise defined, continuous control problem of much higher dimension. By this, system dynamics and
sensitivity properties on the full solution interval are coupled to the interior switching points. Significant draw-
backs of the indirect approach have been resolved. Derivative information is generated in a structured and efficient
way, the modeling of the optimal control problem and of the associated boundary value problem is automated to
a great extent. Advanced numerical algorithms provide a significantly improved stability of the solution process.
Applying embedding techniques to the discrete problem and permanently comparing it with the solution of the
corresponding continuous (i.e. infinite-dimensional) problem proves to be a very powerful strategy for the perfor-
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Figure 5: Finite-dimensional problem: State constrained solution for at maximum 10 discrete control levels (red); four
control levels are active. Motor torque u3 and link velocity θ̇3 vs. time for the example problem. The solution of the
infinite-dimensional case is given for comparison purposes (blue).

mance optimization of manipulators with discrete controls. The new approach is especially attractive, if discrete
and continuous controls shall be treated in a common framework with high accuracy.

Optimal three-dimensional motion trajectories are calculated for a 3-DOF example system. With discrete controls
properly calculated, a similar performance of a robotic manipulator can be achieved as with continuous controls.
However, the solution structure is far more complicated than in the continuous case, especially if additional state
constraints are active.
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