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Abstract. We consider a nonlinear optimal control problem with weakly singular integral equation
as the control object, subject to control constraints. This integral equation corresponds to a frac-
tional moment of stochastic process involving short-range dependencies. We derive the first order
necessary optimality conditions in the form of Euler-Lagrange equation, and then apply them for 
numerical modelling of the problem of optimal portfolio selection.

1 Introduction
Let us formulate the optimal portfolio selection problem in general form. Let the time interval  be fixed,

 denote the state variable, and  denote the vector of control variables. Set
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where F  and  are smooth ( ) functions. Further, we present control constraints in the abstract form of ine-
quality constraint
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where � 	u:  is a smooth ( ) vector function of the dimension . We assume that the gradients ,1C m � 	ui
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of the active constraints are linearly independent at each point u   such that .0)( Du:  Here,
� 	 . / � 	. /0|,...,1 �8� umiuI i:

is the set of active indices at the point .u
Now consider the stochastic object equation by an integral equation
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(where � 	 0#tk�  is the appreciation rate, � 	 0#tkz  is the volatility of the stocks, ( '1,08kH  is the Hurst parame-
ter) with the initial condition , whereatx �)( 0 R8a   is fixed. Following reasoning is strongly dependent on

Hurst parameter value H  as far as it changes the role of integration with respect to � 	Hd) , namely [5] 
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Portfolio can contain stocks with different statistical properties. Hence for the pink noise, denoting kk H2�� ,
10 AA k� , we rewrite (3) as
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where
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The goal of this paper is to obtain the solution of problem (1), (2), (5) with the initial condition .atx �)( 0

2 Necessary optimality conditions
For simplicity, we study problem (1), (2) and (5) in the case 1�p  (so that we omit index  ), using the Dubo-
vitski-Milyutin method, presented in [1], [3], and [8]. Let

k
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Using results [8], we introduce the variation equation [7]
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where )(td�  is the measure of Lebesgue-Stieltjes on ' (0 1,t t , respectively )(t�  is the function of bounded varia-
tion on ' ( , .10 , tt R80c

We denote by ' (� 	 � 	 � 	00 ���� ttt ���   the jump of the function �   at the point t . If the measure � 	td�   is
given, then the jumps ' (� 	t�  are known for all ],[ 10 ttt 8 , particularly, ' (� 	0t�   and ' (� 	1t�   are known. This
means, that the left hand limit � 00 �t 	�  and the right hand limit � 	01 �t�   are also defined. Using this reason-
ing it is easy to get the Euler-Lagrange equation for the optimal process � 	)(),( tutx
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where ,9
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where   and .0)( <ta� � 	� 	 0)( �tuta :�

If 0�u   and x   is arbitrary, then we deduce from equation (6) that

� 	 � 	� 	 � 	

� 	 � 	� 	 � 	
� 	� 	. / � 	

1

1

1

0 0 1 1 0

0

, , ( ( )) ( )

0,

t
x

t

tt

0F t x t u t dt e h x t x t c t t dt

d t u t u t d dt�

�

�

)

7 7 =

� ��

�

�

�� � �

� � � 0 � 0 �)

�
 (8) 

where � 	t=   is the Dirac delta-function. It follows that
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Theorem. Let  be an optimal process on the interval , where ,

. Then there exists a tuple of Lagrange multipliers
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1 local maximum principle:
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1 transversality condition:
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3 Algorithm
To illustrate the proposed methodology, we will consider an example of the portfolio, which contains one bond
and two stocks. In this case the wealth connected with the portfolio at time t   can be written as
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where constrains for the invested capital can be presented in the next manner:

1 first stock  and second stock� 	1 0u t < � 	2 0u t <
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This gives possibility to write a vector of Lagrange multipliers � 	 �t� � 	,...,( 1 t� � 	).4 t�   Denote optimal control as 
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3.1 The case of white noise 
For , we can get classical formulation of the optimal control task for maximum principle and

easily get optimal values , namely
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Solution (17) - (19) is the same solution as in [6] and does not present any interest, however it will be useful in
further reasoning.

3.2 The case with short-range dependence
Let the object equation has a form
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We also suppose that   and2/10 1 AA H .2/10 2 AA H All this gives us the possibility to introduce the adjoint
equation (9)
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and the local maximum principle (10)
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which gives the system of three equations
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The solution to system (23) gives an optimal control (16), which depends on the solutions of the equation (21)
and equation (22). The problem, which arises here, is connected with the fact that the system (23) is undeter-
mined. Thus, in order to find the optimal control, we propose to use the iterative algorithm.

Step 0. Find the optimal control (17) - (19) as if 5.021 �� HH and put   and

  and
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w
i �   If there is no any active constraint, then go to step 1, otherwise

go to step 6.
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Step 2. Using local maximum principle (24) rewrite the adjoint equation as 
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and replace it by an ordinary differential equation  where
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Step 4. Define the new values of optimal control (16)
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Step 5. Check constraints (13) - (15). If any of the constraints is active, then go to step 6, else check
the convergence of the solution. If desired convergence is reached, then go to step 7, else put

,1�� ii � 	� 	 � 	,11 tutu opti � � 	� 	 � 	tut opti
22 �u   and � 	� 	 � 	tvtv opti �   and return to step 3.

Step 6. Write the adjoint equation taking into account active constraints, solve it as a weak singular
Volterra equation of second kind, recalculate (28) and � 	� 	 � 	,)1(

11 tutu ii ��   and

. Put   and return to step 3.
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Step 7. Solve object equation and define the value of goal function
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4 Numerical example 
In order to illustrate proposed methodology of portfolio optimal control we determined parameters of Polish
financial market during the period since 27/12/2006 until 07/03/2007, namely the riskless interest rate

, the discount rate� 	 06.0�tr 05.0��   and the constant relative risk aversion 23.0�5 . We also selected two 
stocks: first one is Arka BZ WBK ASiWE FIO (with PLNY 03.5010 �  ) and second one is Pioneer E FIO (with
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PLNY 47.4320 �  ). Daily prices are presented on Figure 1. Using the semiparametric estimation method [Fila-
tova] we found that for first stock Hurst parameter is 2013.01 �H  and for second one it takes values

.26071.02 �H
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Figure 1. Stocks prices 

Let stochastic differential equation (it corresponds to our object equation and to the situation above) is given by
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where   and� J,tYf 	 	� J,tYg   are some functions, J   is a vector of unknown parameters,   is the incre-
ment of the fractional Brownian motion (FBM) with Hurst parameter
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where second integral is the stochastic Skorohod integral with respect to the FBM [2]. 

To find the estimates
�
J   on the basis of a sample of � 	1�N   observations  of the stochastic process

(29) at known times , , ... ,   it is possible to use ideas of [4]. So, the estimates of the parameters are 
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To find estimates (l5) and (l6) we calibrated time scale taking 01.0��t , that gave us 1ˆ 0.2701� �  and

1 0.7120z �
�

  for first stock and 2ˆ 0.3802� �  and 2 0.9325z �
�

for second one. 

The optimal solution of selected stock portfolio is presented on Figure 2 and Figure 3.
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Figure 2. Optimal strategy of investments
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Figure 3. Optimal strategy for consumption
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