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Abstract. The environmental monitoring, analysis, forecast and control are very important and highly
complicated problems as far as ecological systems show stochastic nature and high dimensionality. So,
the choice of a suitable mathematical model depends on the available data and consequently on an
estimation method. The paper presents the new analytical method for controlling pollutants, namely
for the monitoring of biochemical oxygen demand.

1 Introduction
Assume that the mathematical model of some nonlinear dynamic system with random noises when multiple obser-
vations are available can be presented by the one-dimensional, time-homogeneous stochastic differential equation
(SDE), which in a filtered probability space has the form

dX j
t = f (t,X j,θ1)dt +g(t,X j,θ2)dW j

i , (1)

where t ∈ [t0,T ] is the independent variable with the fixed final value T ∈ (t0,∞) and the initial value t0 ∈ [0,∞),
θ = [θ1,θ2] is a (p1 + p2) - dimensional vector of unknown parameters, X = X(t,θ) is a state variable vector
depending on t and θ , and the coefficient function maps R×R×Rp1 into R and the coefficient function maps into
R, dWt is the increment of A-adapted Wiener process W and J = 1,2, ...,M (M ∈N) is a number of a sample path.

For the SDE (1) are defined initial values and parameters restrictions

cq(X(t0),θ)≤ 0 (2)

where q = 1,2, ...,Q, Q ∈ N, , is the number of restrictions.

In addition, we suppose that the SDE (1) has a strongly unique solution X = {Xt , t ∈ [t0,T ]} on t ∈ [t0,T ] with

supE
[
|Xt |2

]
( E [·] is the mathematical expectation operator) if

I) the coefficient functions f and g are assumed to be jointly - L2
T measurable in (t,x) ∈ [t0,T ] ×R;

II) there exists a finite constant K1 > 0 such that | f (t,x,θ1)− f (t,y,θ1)| ≤K1 |x− y| and |g(t,x,θ2)−g(t,y,θ2)| ≤
K1 |x− y| for all t ∈ [t0,T ] and x,y ∈ R;

III) there exists a constant K2 > 0 such that | f (t,x,θ1)|2 ≤ K2(1 + |x|2) and |g(t,x,θ2)|2 ≤ K2(1 + |x|2) for all
t ∈ [t0,T ] and x ∈ R;

IV) Xt0 is At0 -measurable with E
[∣∣Xt0

∣∣2
]

< ∞.

The model (1) presents the panel data and therefore one has to take into account this fact constructing the esti-
mation procedure. There are only a few identification methods which deal with panel data [4]. The main idea of
these methods is to find the parameters of the stochastic process probability density function using Chi-square or
Kolmogorov-Smirnov criterion functions.

If one takes into account only one sample path of the stochastic process (1), then the method of moments is the
simplest computationally way to get estimators of SDE parameters. The theoretical justification for this method
relies on the fact that under appropriate assumptions the sample moments are consistent estimators of the respec-
tive theoretical moments. However, the unbiasedness of the method of the moment estimators cannot be easily
guaranteed. In a contrary, the maximum likelihood estimation method assumes that there is no prior information
available on the parameters θ [1]. What is needed for the maximum likelihood estimation is the probability den-
sity function of the i.i.d. observations X . The maximum likelihood estimators θ have highly desirable asymptotic
optimality properties when the sample size of observed data is large [2]. Unfortunately it is not suitable for BOD
time series. Thus the different method has to be constructed. Our goal is to find parameters estimates θ of SDE (1)
coefficient functions which satisfy the conditions I) - IV).
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2 Dynamic moment equations
To find the parameters of (1) we will transform and present initial panel data by dynamic moment equations.

Denote the kth state moment of the stochastic process X = {Xt , t ∈ [t0,T ]} by mk(t) = E
[
(Xt)

k
]
. To derive dynamic

moment equations for SDE (1) we apply the Itô formula

u(t,Xt) =
(

f (t,X ,θ1)
∂u(t,Xt)

∂x
+

1

2
(g(t,X ,θ2)2 ∂ 2u(t,Xt)

∂x2

)
dt +g(t,X ,θ2)

∂u(t,Xt)
∂x

dW (3)

(where a function u : [0,∞)×R � R is twice continuously differentiable with respect to the spatial component x),
to obtain an SDE for u(Xt) = (Xt)k

d (Xt)
k = k (Xt)

k−1 [ f (t,X ,θ1)dt +g(t,X ,θ2)dW1]+
1

2
k(k−1)(Xt)

k−2 (g(t,X ,θ2))
2 dWt (4)

and then take the expectation on the integral form of this equation having in mind the martingale property of an Itô
integral

dmk(t)
dt

= k f (t,X ,θ1)+
1

2
k(k−1) [g(t,X ,θ2)]

2 dW (5)

where mk(t0) = E
[
(Xt0)

k
]
, f (t,X ,θ1) and g(t,X ,θ2) are transformed coefficient functions.

In particular case, for linear SDE with f (t,X ,θ1) = θ1Xt and g(t,X ,θ2) = θ2Xt first and second moment dynamic
equations (4) are

dm1(t) = θ1m1(t)dt (6)

dm2(t) = 2θ1m2(t)dt +θ 2
2 m2(t)dt (7)

for nonlinear SDE with f (t,X ,θ1) =
(
θ11Xt −θ12X2

t
)

and g(t,X ,θ2) = θ2Xt the same moments are

dm1(t) =
[
θ11m1(t)−θ12 (m1(t))

2
]

dt (8)

dm2(t) = 2
[
(θ11 +θ 2

2 )m2(t)−θ12 (m2(t))
3/2

]
dt (9)

where m1(t0) = E
[
Xt0

]
and m2(t0) = E

[
(Xt0)

2
]
.

3 The identification method
In order to estimate the unknown parameters θ = [θ1,θ2] , a number of measurements, say nT , are available for

each of trajectories of the stochastic process (1). These {Yn}nT =1
n=1 measurements are used in order to estimate the

first k∗ moments m̂k(t) = E
[
Y k

]
, k = 1,2, ...,k∗ , but, due to the inherent errors in the observations, estimates m̂k

do not coincide with theoretical values

m̂k(tn) = mk(tn,θ)+ εn, n = 1,2, ...,nT (10)

where εn are independently and identically normally distributed errors due to properties of Wiener process.

As one can see equation (5) is an ordinary differential equation (ODE), so that we can use ideas of estimation
procedures for ODEs [3]. For this purpose we introduce a discretization t0 < t1 < ... < tn < ... < tnT = T of the
time interval [t0,T ] with some integer nT ≥ 2, denote the linear combination of right-hand side function of ODE
(5) for intermediate arguments values by G(tn,mk(tn,θ))and rewrite this equation as

0 = mk(tn+1,θ)−mk(tn,θ)−ΔnG(tn,mk(tn,θ)) (11)

where mk(·, ·) is an approximation to the solution mk(·, ·) of ODE (5), mk(tn,θ) = E
[(

Xt0

)k
]
, Δn = tn+1 − tn

is the length of the time discretization subinterval [tn, tn+1] (for the simplicity we will consider equidistant time
discretization denoting it by Δ), the function G(tn,mk(tn,θ)) : [0,∞)×R×R is twice continuously differentiable
and n = 0,1, ...,nT−1.

Using the least squares method, the parameter estimation problem for SDE (1) can be formulated as follows:

argminΦ(θ) =
1

2nT

k∗

∑
k=1

nT

∑
n=1

[mk(tnT ,θ)− m̂k(tnT )]2 (12)
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Replications, N Scheme θ̂11 θ̂12 θ̂2

std
(

θ̂11

)
std

(
θ̂12

)
std

(
θ̂2

)
25 EU 0.5662 0.5250 0.1632

0.0254 0.0204 0.0078
RK 0.5772 0.5097 0.1832

0.0194 0.0141 0.0066
100 EU 0.5664 0.5101 0.1718

0.0248 0.0130 0.0062
RK 0.5964 0.4948 0.1918

0.0148 0.0109 0.0041

500 EU 0.5711 0.4977 0.1869
0.0238 0.0131 0.0051

RK 0.6092 0.5003 0.2007
0.0143 0.0076 0.0036

Table 1: Results of Monte Carlo experiment: the scheme selection

subjected to (11) and
|mk(tnT ,θ)− m̂k(tnT )| ≤ Δγ (13)

where γ ≥ 1 is the order of the approximation mk convergence to mk.

Problem (11) - (13) is a typical nonlinear optimization problem, which can be solved by Gauss-Newton method;
however, the final results may strongly depend on the structure of the equation (11).

4 Monte Carlo simulation
The objective of this section is to show stability and efficiency properties of our estimation method. The methodol-
ogy described above has been tested on Workstation in double precision Matlab version 7.0 under Vista Microsoft
operation system. In our experiments, the stopping tolerance is set to 10−6.

In biology the following model is often considered

dXt =
(
θ11Xt −θ12X2

t
)

dt +θ2XtdWt (14)

where Xt is the continuous-time single-species population. Many of the term structure models found in the literature
may be nested within this model class by imposing appropriate parameter constraints for a survey.

To generate the observed data, SDE (14) with actual coefficient values θ11 = 0.6, θ12 = 0.5, and θ2 = 0.2 with
starting value X(t0) = 0.3 was solved numerically by Milstein scheme [5]:

Y j
n+1 = Y j

n +Y j
n

(
θ11−θ12Y j

n
)
Δ+θ2Y j

n ΔW j
n +

1

2
θ 2

2 Y j
n

[(
ΔW j

n
)2−Δ

]
(15)

with Y0 = X (t0), j = 1,2, ...,M (in this experiment M = 25) and n = 0,1, ...,nT−1. The sampling interval t ∈ [0,6]
was divided into nT = 48 time steps of length Δ = 2−3. The Marsaglia method was used in order to simulate the
increments ΔWn of Wiener process [5]. The theoretical values of the moments were also calculated using ODEs (8)
- (9) with starting values m1(t0) = X (t0) and m2(t0) = X2(t0). To study the influence of the equation (11) structure
on the final results the explicit Euler scheme (EU) with γEU = 1.0 and explicit two-steps Runge-Kutta scheme
(RK) with γRK = 2.0 were used. Optimization of the problem (11) - (13) with starting values θ st

11 = 0.4, θ st
12 = 0.4

and θ st
2 = 0.4 were done by Matlab Optimization Toolbox. Table 1 reports the findings for the estimates. As we

expected, the estimators are close to the true parameter values. Better results were gotten for Runge-Kutta method.
So, we can conclude that the scheme with higher values of γ gives more precise results.

Next we study the property of the estimates, namely if the estimates are asymptotically unbiased. The estimator is
called asymptotically unbiased if the bias tends to zero as the number M of observations increases, that is

lim
M→∞

E
[
θ i (M)

]
= 0 (16)

where θ i(M) = θi− θ̂i is the estimator error.

Staying with we same conditions for data generation as in previous experiment, using the two-steps Runge-Kutta
scheme and N = 250 replications on integration interval t ∈ [0,6] with Δ= 0.125, we use M = {10,25,50,100} to
check (16). Table 2 reports the mean values of the estimated statistics.
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θ̂11 θ̂12 θ̂2

M bias
(

θ̂11

)
bias

(
θ̂12

)
bias

(
θ̂2

)
std

(
θ̂11

)
std

(
θ̂12

)
std

(
θ̂2

)
0.5596 0.5115 0.2253

10 -0.0404 0.0115 0.0257
0.0501 0.0281 0.0057

0.5731 0.5090 0.1868
25 -0.0269 0.0091 -0.0135

0.0312 0.0186 0.0052

0.5867 0.4974 0.1912
50 -0.0133 -0.0026 -0.0109

0.0211 0.0119 0.0046

0.5967 0.5014 0.1940
100 -0.0033 0.0015 -0.0061

0.0113 0.0108 0.0035

Table 2: Results of Monte Carlo experiment: the unbiasedness

As we can see the estimates of SDE (1) are asymptotically unbiased. This allows concluding that estimation
method can be successfully used. We checked the method on the field data received for BOD in Omega Bay in
Sevastopol, Ukraine. Finally we got data only from one layer of sensors. The estimation method gave the model

dXt =
(
0.9916Xt −1.2127X2

t
)

dt +0.01276XtdWt (17)

where Xt is BOD index. Figure 1 illustrates the data from the sensors and forecast results for BOD.

Figure 1: The data for Omega Bay of Sevastopol (Ukraine) and forecast.
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