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Abstract. The port-Hamiltonian modeling framework is extended to a class of systems containing
memristive elements. First, the concept of memristance is generalized to the same generic level as the
port-Hamiltonian framework. Secondly, the underlying Dirac structure is augmented with a memristive
port. Since both an integration and a differentiation is involved in this process, a memristor, like a
resistor, appears to be causally neutral. This leaves two possible choices to configure the memristive
port. The inclusion of memristive elements in the port-Hamiltonian framework turns out to be almost
as straightforward as the inclusion of resistive elements. Although a memristor is a resistive element, it
is also a dynamic element since the associated Ohmian laws are rather expressed in terms of differential
equations. This means that the state space manifold, as naturally defined by the storage elements, is
augmented by the states associated to the memristive elements. Hence the order of complexity is, in
general, defined by the number of storage elements plus the number of memristors in the system. Apart
from enlarging our repertoire of modeling building blocks, the inclusion of memristive elements in the
existing port-Hamiltonian formalism possibly opens up new ideas for controller synthesis and design.

1 Introduction and Motivation
In the early seventies, Chua [3] postulated the existence of a new basic electrical circuit element, called the memris-
tor, defined by a nonlinear relationship between charge and flux-linkage. The memristor, a contraction of memory
and resistance that refers to a resistor with memory, completes the family of the well-known existing fundamental
circuit elements: the resistor, inductor, and capacitor. Although a variety of physical devices, including thermis-
tors, discharge tubes, Josephson junctions, and even ionic systems like the Hodgkin-Huxley model of a neuron,
were shown to exhibit memristive effects [4, 5], a physical passive two-terminal memristive prototype could not be
constructed until very recently scientists of Hewlett-Packard Laboratories announced its realization in Nature [10].
Strukov et al. show that memristance naturally arises in nanoscale systems when electronic and atomic transport
are coupled under an external bias voltage. On the other hand, as pointed out in [9], a tapered dashpot is a mechan-
ical resistor whose resistance depends on the displacement of its terminals. Consequently, a description in terms of
its associated force and velocity generally yields some complicated, possibly hysteretic, constitutive relationship.
These difficulties are circumvented by modeling the tapered dashpot as a mechanical memristive element using
the relationship between its displacement and momentum (the mechanical analogies of charge and flux linkages)
instead.

One of the main reasons why the memristor concept has not yet played a major role in modeling problems can
most likely be explained from the fact that so far the majority of practical devices are reasonably well modeled
by some (though often artificial) combination of standard modeling building blocks, like resistive, inductive, and
capacitive elements, and their nonlinear and multiport versions. However, as nanoscale electronic devices become
more and more important and complex [4], it might be beneficial, and on the longer term even necessary, to enlarge
our repertoire of modeling building blocks that establishes a closer connection between the mathematics and the
observed physics.

In this paper, we study the inclusion of memristive elements and their properties in the port-Hamiltonian mod-
eling framework. The port-Hamiltonian formalism naturally arises from network modeling of physical systems
in a variety of domains (e.g., mechanical, electrical, electromechanical, hydrodynamical, and thermodynamical).
Exposing the relation between the energy storage, dissipation, and interconnection structure, this framework un-
derscores the physics of the system. The connection with network (bond-graph) modeling is further formalized
with the notion of a so-called Dirac structure on the space of flows and efforts. One of the strong aspects of the
port-Hamiltonian formalism is that a power-preserving interconnection between port-Hamiltonian systems results
in another port-Hamiltonian system with composite energy, dissipation, and interconnection structure. Based on
this principle, complex, multidomain systems can be modeled by interconnecting port-Hamiltonian descriptions
of its subsystems. Moreover, several control design methodologies are available that can be directly applied to
such port-Hamiltonian descriptions of complex nonlinear systems. It is precisely in this context that a memristive
port-Hamiltonian description can be of added value.
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The remainder of the paper is organized as follows. In Section 2, we briefly recall the basic properties of port-
Hamiltonian systems defined with respect to a Dirac structure. Section 3 gives the generalization of the concept of
memristance to the same generic level as the port-Hamiltonian framework. The extension of the input-state-output
port-Hamiltonian formulation with a generalized memristive port and some of its basic properties are highlighted
in Section 4. Section 5 illustrates some aspects of the theory by using three simple examples. The paper is
concluded with a slight extension of the framework to allow for mutual dependencies between some of the mem-
ristive elements and dependencies between some of the memristive elements and the environment, and some final
remarks.

Notation. All vectors, including the gradient of a function, defined in the paper are column vectors.

2 The Port-Hamiltonian Formalism
The basic ingredient of any port-Hamiltonian system is the power-conserving interconnection structure, mathe-
matically formalized as a Dirac structure, linking the various power ports of the system, see Figure 1. Power ports
(henceforth simply called ports) carry two sets of conjugate variables: a vector of flow variables f ∈ F and a
vector of effort variables e ∈ E , with product eT f denoting the power occurring at the port. The Dirac structure
captures the basic interconnection laws (like Kirchhoff’s laws) together with ideal power-conserving elements like
transformers, gyrators, and ideal constraints, and generalizes Tellegen’s theorem and d’Alembert’s principle.

D

eR

fR

eS

fS

eP fP

resistive elements storage elements

interconnection

environment

Figure 1: Many physical systems can be characterized by interconnections between energy storage elements, resistive
elements, and the environment. The key concept in the formulation of port-based network models of physical systems as
port-Hamiltonian systems is the geometric notion of a Dirac structure D .

In contrast to the common modeling approaches, where two dual types of energy storage (like kinetic and potential
energy in mechanical systems, or electric and magnetic energy in electrical networks) are distinguished, the defini-
tion of the energy storage port in the port-Hamiltonian framework assumes just one type of storage. This approach
is adopted from the so-called Generalized Bond Graph (GBG) framework introduced in [1]. In this framework
the usual physical domains are split into two subdomains that are explicitly connected by a so-called symplectic
gyrator. Consequently, we do not speak of mechanical or electrical domains, but of kinetic and potential, or electric
and magnetic domains, etc., see Table 1 for a complete overview.1

2.1 Ports, Dirac Structures, and Passivity

In order to define a Dirac structure, the spaces of flows and efforts are naturally partitioned as F := FS×FR×FP
and E := ES ×ER ×EP, each corresponding to the following set of ports:

• The energy storage port, with port variables ( fS,eS) ∈ FS × ES, is interconnected with the energy storage
of the system, which in turn is characterized by an nS-dimensional space X of state variables, locally
represented by x ∈ X , together with a Hamiltonian function H : X → R denoting the total stored energy.
The corresponding flow variables are given by the rate of change of the state variables. This is accomplished
by setting

fS = −ẋ

eS =
∂H
∂x

(x).
(1)

Hence, the power at the energy storage port can be written as

Ḣ(x) =

(
∂H
∂x

(x)
)T

ẋ = −eT
S fS. (2)

1An additional advantage of the GBG framework is that the concept of mechanical force has no unique meaning as it may play the role of a
flow in the kinetic domain or an effort in the potential domain, thus leaving the discussion about the force-voltage versus force-current analogy
a non-issue.
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Table 1: Domains and variables used in the port-Hamiltonian framework.

physical domain flow f ∈ F effort e ∈ F state variable x =
∫

f dt

electric current voltage charge
magnetic voltage current flux linkage

potential translation velocity force displacement
kinetic translation force velocity momentum
potential rotation angular velocity torque angular displacement
kinetic rotation torque angular velocity angular momentum

potential hydraulic volume flow pressure volume
kinetic hydraulic pressure volume flow flow tube momentum

chemical molar flow chemical potential number of moles
thermal entropy flow temperature entropy

• The resistive port corresponds to internal energy dissipation (e.g., friction, electrical resistance, etc.), and its
port variables ( fR,eR) ∈ FR ×ER are terminated by a static resistive relation of the form

fR = −FR(eR), (3)

with FR : ER → FR. In many cases, FR can be derived from a so-called content function D : ER → R in the
sense that FR(eR) = ∂D

∂eR
(eR). For linear resistive elements, (3) reduces to fR = −ReeR, with Re = RT

e some
constant resistance matrix. Note that for passive resistors eT

RFR(eR) ≥ 0, or equivalently, eT
R fR ≤ 0.

• Finally, the remaining port, with port variables ( fP,eP)∈FP×EP, denotes the interaction port of the system,
modeling its interaction with other system components or the environment.

The Dirac structure D is a linear relation between all the port variables that satisfy the power-conservation property

eT
S fS + eT

R fR + eT
P fP = 0, (4)

and has maximal dimension with respect to this property.2 It follows that any port-Hamiltonian system with passive
resistive elements satisfies the power-balance inequality

Ḣ(x) = −eT
S fS = eT

R fR + eT
P fP ≤ eT

P fP (5)

since eT
R fR ≤ 0. Integrating the latter from initial time t0 to t yields the energy-balance inequality

H[x(t)]−H[x(t0)] =
∫ t

t0
eT

R(t ′) fR(t ′)dt ′ +
∫ t

t0
eT

P(t ′) fP(t ′)dt ′ ≤
∫ t

t0
eT

P(t ′) fP(t ′)dt ′. (6)

If the Hamiltonian function H(x) is bounded from below, then port-Hamiltonian systems are passive with respect to
the supply rate eT

P fP and storage function the Hamiltonian function. Note that, recalling Lyapunov stability theory,
together with the sufficient conditions for the stability of an equilibrium point, it can shown that the Hamiltonian
is often a bona-fide candidate Lyapunov function [11].

2.2 Input-State-Output Representation

An important special case of port-Hamiltonian systems is the class of input-state-output port-Hamiltonian systems,
where there are no algebraic constraints on the state variables, and the flow and effort variables at all the other ports
have been split into conjugated input-output pairs. The corresponding Dirac structure, in kernel representation, is
defined by

D =
{
( fS,eS, fR,eR, fP,eP) ∈ F ×E

∣∣ fS + JeS + GR fR + GP fP = 0,

−GT
ReS + eR = 0, −GT

PeS + eP = 0
}
,

(7)

where J = −JT , GR, and GP are matrices of appropriate dimensions depending on the interconnection, resistive,
and input-output structure of the system, respectively. Furthermore, assuming that the resistive elements (3) are
linear, the constitutive relationship (3) simplifies to

fR = −ReeR, (8)
2Note that (4) is a direct generalization of Tellegen’s theorem.
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with Re = RT
e some constant resistance matrix. Then, around x ∈ X , by utilizing (1) and (3), the dynamics on D

take the form
−ẋ+ J

∂H
∂x

(x)−GRReeR + GP fP = 0,

−GT
R

∂H
∂x

(x)+ eR = 0,

−GT
P

∂H
∂x

(x)+ eP = 0,

which, after substitution of the second equation into the first and a slight rearrangement, yields the well-known
input-state-output port-Hamiltonian representation

ẋ =
(
J−R

)∂H
∂x

(x)+ GP fP

eP = GT
P

∂H
∂x

(x),
(9)

with resistive structure matrix R := GRReGT
R . Consequently, the power-balance inequality (5) can be written as

Ḣ(x) = −

(
∂H
∂x

(x)
)T

R
∂H
∂x

(x)+ eT
P fP ≤ eT

P fP, (10)

under the condition that R � 0. Note that in this framework, the flow and effort related to the environment are
naturally defined as the input and output of the system, respectively.

For many systems, especially those with 3D mechanical components, the Dirac structure will in general be modu-
lated by the state variables x. In such a case, the structure matrices J, GR, and GP are replaced by their modulated
versions J(x), GR(x), and GP(x), respectively. More details on the geometric properties of Dirac structures and
port-Hamiltonian systems can be found in [2, 6, 11].

3 Properties of the Memristor
Before generalizing the concept of memristance to fit the definitions of the port-Hamiltonian framework discussed
in the previous section, we will first briefly recall the basic properties of the electrical memristor.

3.1 Chua’s Memristor

Since electronics was developed, engineers designed circuits using combinations of three basic two-terminal el-
ements: resistors, inductors, and capacitors. From a mathematical perspective, the behavior of each of these
elements, whether linear or nonlinear, is described by relationships between two of the four basic electrical vari-
ables: voltage, current, charge, and flux linkage. A resistor is described by the relationship of current and voltage;
a capacitor by that of voltage and charge, and an inductor by that of current and flux linkage. But what about
the relationship between charge and flux linkage? As argued by Chua in the early seventies [3], a fourth element
should be added to complete the symmetry. He coined this ‘missing element’ the memristor, referring to a resistor
with memory. The memory aspect stems from the fact that a memristor ‘remembers’ the amount of current that has
passed through it together with the total applied voltage. More specifically, if q denotes the charge and φ denotes
the flux linkage, then a two-terminal charge-controlled memristor is defined by the constitutive relationship

φ = φ̂(q).

Since flux linkage is the time integral of voltage u (like in Faraday’s law), and charge is the time integral of current
i, or equivalently, u = φ̇ and i = q̇, we obtain

u = Mi(q)i, (11)

where Mi(q) := dφ̂(q)/dq is called the incremental memristance.

Similarly, a two-terminal flux-controlled memristor (memductor) is defined by

q = q̂(φ),

Differentiation yields the dual of (11),

i = Mu(φ)u, (12)

where Mu(φ) := dq̂(φ)/dφ is called the incremental memductance.
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Observe that (11) and (12) are just charge- and flux-modulated versions of Ohm’s law, respectively. It is important
to realize that for the special cases that the constitutive relations are linear, that is, when the incremental memris-
tance Mi or the incremental memductance Mu is constant, a memristor or memductor becomes an ordinary resistor
or conductor. Hence, memristors and memductors are only relevant in nonlinear circuits, which may account in
part for their neglect in linear network and systems theory.

Before the effect of memristive elements can be studied in the port-Hamiltonian framework, we first need to bring
the concept to the same generic level. This is accomplished by generalizing the constitutive relationships (11) and
(12) to the level of flows and efforts.

3.2 The Generalized Memristor

In view of the classifications and analogies of Table 1, the generalization of either the charge-controlled memristor
(11) or the flux-controlled memristor (12) is easily deduced as follows. Let x f ∈ X f denote the integrated flow,
and let xe ∈ Xe denote the integrated effort, or equivalently, ẋ f = f , and ẋe = e, respectively, then the relationship

xe = x̂e(x f )

constitutes an x f -controlled memristor, i.e.,

e = Mf (x f ) f , (13)

with generalized memristance Mf (x f ) := dx̂e(x f )/dx f .

On the other hand, by interchanging the roles of the (integrated) flow and effort, we might as well consider the
corresponding dual form

x f = x̂ f (xe)

yielding an xe-controlled memristor, i.e.,

f = Me(xe)e, (14)

with generalized memristance Me(xe) := dx̂ f (xe)/dxe.

In a similar fashion as the storage or resistive elements, the constitutive relationship of a memristive element will
in many cases be derivable from a so-called memristive action function A f : X f → R (resp., Ae : Xe → R) in the
sense that

xe =
∂A f
∂x f

(x f )

(
resp., x f =

∂Ae
∂xe

(xe)

)
. (15)

More details on the action and some of its applications in a circuit-theoretic context can be found in [3, 8].

It is important to remark that the definitions (13) and (14) are in some sense arbitrary. This can be explained as
follows. For energy storage elements the distinction between flow and effort as the equilibrium establishing (rate of
change of state) and the equilibrium determining variable, respectively, is clear since a storage element is defined
by a constitutive relationship between effort and integrated flow (state), or in a thermodynamic parlance, between
an intensive state and an extensive state, i.e., e = ê(x) or x = x̂(e), with ẋ = f . In terms of causality, the constitutive
relationship e = ê(x) yields a so-called integral causal form in which the flow can be considered as input and the
effort as output, see Figure 2(a). This is the form generally considered in the port-Hamiltonian framework. The
dual or co-energy form, x = x̂(e), yields a differential causal form, considering effort as input and flow as output.
Clearly, since both an integration and a differentiation is involved in ‘lifting’ the memristor to the space of flows
and efforts, the memristor, like the resistor, is causally neutral, i.e., there is no fixed or preferred causality, so that
it can accept either a flow or an effort as input variable, see Figure 2(b). Furthermore, a memristor does not store
integrated flow or integrated effort, it just book keeps the amount of integrated flow or integrated effort that passed
its port. Hence it does not distinguish between the various subdomains outlined in Table 1. Moreover, the state
variables associated to (13) and (14) are not defined state variables associated to any energy storage element in the
system, but the state of the memristive element itself.

For ease of reference, we will refer to (13) as a flow-causal memristor and to (14) as an effort-causal memristor.

4 Port-Hamiltonian Systems with Memristive Dissipation
We are now ready to extend the port-Hamiltonian formalism, as introduced in Section 2, by adding a memristive
port, with port variables ( fM ,eM) ∈ FM × EM, to the Dirac structure. For simplicity, we first assume that the
resistive port is vacuous, i.e., the system does not contain any resistive elements.
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Figure 2: (a) Preferred causality of a storage element; (b) Causally natural character of a memristive element.

4.1 Input-State-Output Representation

Consider instead of (7) the Dirac structure

D =
{

( fS,eS, fM ,eM, fP,eP) ∈ F ×E
∣∣ fS + JeS + GM fM + GP fP = 0,

−GT
MeS + eM = 0, −GT

PeS + eP = 0
}
,

(16)

where J and GP are as before, and GM is a matrix of appropriate dimensions depending on the memristive struc-
ture. Next, assuming that the memristive port variables are terminated by a flow-causal memristive constitutive
relationship (cf. (13))

fM = ẋ f ,

eM = −Mf (x f ) fM,
(17)

with Mf (x f ) = MT
f (x f ) some memristance matrix of appropriate dimensions, the dynamics on D take the form

−ẋ+ J
∂H
∂x

(x)+ GMẋ f + GP fP = 0,

−GT
M

∂H
∂x

(x)−Mf (x f )ẋ f = 0,

−GT
P

∂H
∂x

(x)+ eP = 0.

(18)

In a similar fashion as before, but with the additional condition that det
(
Mf (x f )

)
	= 0, for all x f ∈ X f , the latter

set of equations can be rearranged into an input-state-output port-Hamiltonian system given by

ẋ =
(
J−M(x f )

)∂H
∂x

(x)+ GP fP

eP = GT
P

∂H
∂x

(x),
(19)

with memristive structure matrix M(x f ) := GMM−1
f (x f )GT

M . Observe, however, that the formulation is incomplete
without also considering the second equation of (18), i.e., the memristive state variable x f will (in general) be
determined by the solution of

ẋ f = −M−1
f (x f )GT

M
∂H
∂x

(x). (20)

The invertibility condition on the memristance matrix can be avoided by starting from an effort-causal representa-
tion (cf. (14)) instead, i.e.,

fM = −Me(xe)eM,

eM = ẋe,
(21)

with Me(xe) = MT
e (xe). Hence the dynamics on D now take the form

−ẋ+ J
∂H
∂x

(x)−GMMe(xe)ẋe + GP fP = 0,

−GT
M

∂H
∂x

(x)+ ẋe = 0,

−GT
P

∂H
∂x

(x)+ eP = 0,

(22)

yielding again a port-Hamiltonian system of the form (19), but now with M(xe) := GMMe(xe)GT
M , and

ẋe = GT
M

∂H
∂x

(x). (23)
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4.2 Passivity and the Power-Balance Inequality

A memristive port described by (21) is passive if and only if its generalized memristance Me(xe) is nonnegative,
i.e., Me(xe) � 0, for all xe ∈ Xe. Indeed, the instantaneous power dissipated by (21) is given by

PM = eT
M fM = −eT

MMe(xe)eM ≤ 0, (24)

where we recall that the sign convention adopted here is that power supplied to the system carries a positive sign
and power extracted from the system carries a negative sign.

The associated power-balance inequality takes the form

Ḣ(x) = −

(
∂H
∂x

(x)
)T

M(xe)
∂H
∂x

(x)+ eT
P fP ≤ eT

P fP, (25)

where M(xe) := GMMe(xe)GT
M � 0 since Me(xe) � 0, for all xe ∈ Xe. Hence if the Hamiltonian function H(x)

is bounded from below, then the system is passive with respect to the supply rate eT
P fP and storage function the

Hamiltonian function. Note that the additional dynamic equation (23) does not have any influence on the power-
balance inequality other than that it provides a solution for xe.

A similar discussion holds for a memristive port described by (17), where the additional invertibility condition
implies that Mf (x f ) 
 0, for all x f ∈ X f .

4.3 Degenerate Case: Linear Memristance

We observe that, dynamically, the memristive port appears as either an integrated flow or an integrated effort
modulated resistive port. In the linear case, i.e., when Mf in (17), or Me in (21), is constant, the memristive port
reduces to a purely resistive port. This property is consistent with the original definitions of the memristor outlined
in Subsection 3.1.

4.4 Order of Complexity

The addition of the memristive port yields that the total state space is in general extended to either X ×X f or X ×
Xe. Consequently, in addition to the initial values of the state variables associated to the storage elements, also
the initial values of the memristors should be specified in order to find a complete solution of the port-Hamiltonian
systems presented above. This means, in general, that the order of complexity [7] of a port-Hamiltonian system
with memristive dissipation is determined by

n = nS + nM,

where nS denotes the number of energy storage elements and nM the number of memristive elements. As shown in
the next section, depending on the system configuration the order of complexity can sometimes be reduced.

5 Examples
5.1 Josephson Junction Circuit Model

The classical circuit model for a Josephson junction consists of a parallel connection of a linear resistor r, a linear
capacitor C, and a flux-controlled nonlinear inductor described by the constitutive relationship iL = Io sin(kφL),
where Io is a device parameter and k = 4πε/h̄, with ε and h̄ denoting the electron charge and Plank’s constant,
respectively. As discussed in [4], a more rigorous quantum mechanical analysis of the junction dynamics reveals
the presence of an additional small current component that can be approximated by i = gcos(koφ)u, for some
constants g,ko. Obviously, the latter can be associated with a flux-controlled memristor (memductor) of the form

q =
g
ko

sin(koφ),

with q̇ = i and φ̇ = u. Figure 3 shows the more realistic circuit model for a Josephson junction consisting of a
parallel connection of each of the four basic circuit elements.

From a port-Hamiltonian perspective the circuit consists of four ports: an energy storage port defined by the total
energy stored in the capacitor and the inductor, a memristive port, a resistive port, and an external port. The total
stored energy is given by

H(qC,φL) =
q2

C
2C

−
Io
k

cos(kφL),
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I

U C r

iL = Io sin(kφL)

q = g
ko

sin(koφ)

Figure 3: More realistic model of a Josephson junction [4].

which, according to Table 1, defines an energy storage port

−φ̇L = fS1

eS1 =
∂H
∂φL

−q̇C = fS2

eS2 =
∂H
∂qC

.

Using the effort-causal form (21), the memristive port is defined by

fM = −gcos(koφe)eM,

eM = φ̇e,

and according to Kirchhoff’s laws we obtain the following set of structure matrices

J =

(
0 1

−1 0

)
, GM =

(
0
1

)
, GP =

(
0
1

)
.

Although the presence of both resistive and memristive elements is not discussed explicitly, the system is easily
extended by introducing a resistive port of the form fR =−eR/r and setting GR = (0 1)T . On the other hand, since
the resistor is linear it can also be considered as a degenerate memristor (see Subsection 4.3). However, in both
cases the following input-state-output port-Hamiltonian system is obtained

(
φ̇L
q̇C

)
=

(
0 1

−1 −gcos(koφe)−
1
r

)⎛⎜⎜⎝
∂H
∂φL

∂H
∂qC

⎞⎟⎟⎠+

(
0
1

)
I,

together with

U =
∂H
∂qC

,

φ̇e =
∂H
∂qC

.

Interestingly, the system is passive under the condition that rgcos(koφe) ≥−1, for all admissible φe.

5.2 Mechanical System

Consider the mechanical system depicted in Figure 4. The system consists of two carts with masses m1 and m2,
interconnected by a linear spring with elastance k, and a tapered dashpot d. Since the storage elements are linear,
we have v1 = p1/m1, v2 = p2/m2, and Fk = kxk, where v1, v2, p1, and p2 are, respectively, the velocities and
momenta of the two masses, and Fk and xk are, respectively, the force and displacement of the spring. The total
stored energy is given by

H(p1, p2,xk) =
p2

1
2m1

+
p2

2
2m2

+
kx2

k
2

.
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According to Table 1, the energy storage port assumes the form

− ṗ1 = fS1

eS1 =
∂H
∂ p1

− ṗ2 = fS2

eS2 =
∂H
∂ p2

−ẋk = fS3

eS3 =
∂H
∂xk

.

(26)

As argued in [9], a tapered dashpot can in principle not be treated as an ordinary damper since the incremental
damping coefficient, i.e., the mechanical resistance, depends on the piston displacement. Hence a description in
terms of its associated force Fd and velocity vd generally yields some complicated (possibly hysteretic) constitutive
relationship. These difficulties are circumvented by modeling the tapered dashpot as a memristive element. Indeed,
suppose that the constitutive relationship is given by a monotonically increasing function pd = p̂d(xd), where pd
and xd denote the memristor’s momentum and displacement, respectively, then Fd = Mv(xd)vd , with mechanical
memristance Mv(xd) := d p̂d(xd)/dxd , with ṗd = Fd and ẋd = vd . Hence the memristive port is defined (in effort-
causal form) by

fM = −Mv(xd)eM,

eM = ẋd .
(27)

Since there are no inputs and outputs, the interaction port is vacuous and GP = 0. Furthermore, the interconnective
relationships dictate the remaining structure matrices

J =

⎛⎝ 0 0 −1
0 0 1
1 −1 0

⎞⎠ , GM =

⎛⎝ 1
−1

0

⎞⎠ .

Hence, the dynamics of the system are described by the following port-Hamiltonian equations

⎛⎝ṗ1
ṗ2
ẋk

⎞⎠ =

⎛⎝ −Mv(xd) Mv(xd) −1
Mv(xd) −Mv(xd) 1

1 −1 0

⎞⎠
︸ ︷︷ ︸

J−M(xd )

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∂H
∂ p1

∂H
∂ p2

∂H
∂xk

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (28)

together with

ẋd =
(
1 −1 0

)
⎛⎜⎜⎜⎜⎜⎜⎜⎝

∂H
∂ p1

∂H
∂ p2

∂H
∂xk

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (29)

Differentiating the Hamiltonian H(x), where x = (p1, p2,xk)
T , along the trajectories of the system yields the power-

balance of the system, i.e.,

Ḣ(x) = −

(
∂H
∂x

)T
M(xd)

∂H
∂x

≤ 0,

where the inequality stems from the fact that M(xd) � 0 by assumption. This implies that the mechanical system
is passive—as should be expected.

Concerning the solvability of the port-Hamiltonian equations (28)–(29), at first glance the order of complexity for
this system appears to be equal to four. However, since the relative velocity of the dashpot equals the difference
between the velocities of the masses, its relative displacement is given by the integral

xd(t) = xd(t0)+

∫ t

t0

[
∂H
∂ p1

(p1(t ′))−
∂H
∂ p2

(p2(t ′))
]

dt ′ = xd(t0)+

∫ t

t0

[
v1(t ′)− v2(t ′)

]
dt ′,
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Figure 4: A mechanical mass-spring system with a tapered dashpot. Note that the shape of the pin may be machined to
produce any desired memristance curve.

which implies that xd(t0) = x1(t0)− x2(t0). This means that the initial value of the dashpot is determined by the
initial distance between the two masses, which is a hard physical constraint.3 The same discussion holds for the
spring so that the actual order of complexity for this system equals two. Moreover, we have that xd = xk, which
means that (29) can be eliminated by replacing xd with xk in (28).

It should be pointed out, however, that for this particular system it is a coincidence that it is possible to represent
the tapered dashpot as a modulated resistor since its displacement coincides with the displacement of the spring,
which, in turn, is proportional to the force in the spring. In general, the states of the memristive elements in
a system are independent from the states of the energy storage elements, like in the Josephson junction circuit
model. Another example of a system in which memristance plays a crucial role is the electrolytic tank system
discussed in [9]. An example for which the minimal number of state equations is less than the order of complexity
is briefly discussed next.

5.3 Electrical Network

Consider a flux-controlled memductor, with a constitutive relationship qM = q̂M(φM), connected in parallel with
a linear capacitor described by uC = qC/C. Following the ideas exposed in Section 4, we obtain the following
port-Hamiltonian description

q̇C = −Mu(φM)
∂H
∂qC

,

φ̇M =
∂H
∂qC

,

with H(qC) = q2
C/(2C) and Mu(φM) := dq̂M(φM)/dφM. Clearly, the system has two independent initial conditions

φM(t0) and qC(t0). However, since qC(t)− qC(t0) = −(qM(t)− qM(t0)), the system can be reduced to a single
first-order differential equation

φ̇M = −
1
C

[
q̂M(φM)− q̂M(φM(t0))−qC(t0)

]
,

but still two initial conditions are needed to solve the latter.

6 Coupled Memristive Elements
During the construction of the input-state-output port-Hamiltonian formulation outlined in Section 4 it is implicitly
assumed that there are no mutual dependencies between the memristive elements and no dependencies between
the memristive elements and the environment. In order to account for such phenomena, the Dirac structure (16) is
slightly extended as follows

D =
{
( fS,eS, fM,eM, fP,eP) ∈ F ×E

∣∣ fS + JeS + GM fM + GP fP = 0,

−GT
MeS −GMM fM −GMP fP + eM = 0, −GT

PeS + GT
MP fM −GPP fP + eP = 0

}
,

(30)

where J, GM, and GP are as before, GMM and GPP are skew-symmetric matrices associated to, respectively, the
mutual dependencies between the memristive elements and the flows and efforts at the external port, and GMP
reflects the coupling between the memristive elements and the environment. Using the effort-causal representation

3It is assumed here that the system is already interconnected before t = t0, i.e., there are no impacts.
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of the memristive port (21), the dynamics on D are then expressed as

−ẋ+ J
∂H
∂x

(x)−GMMe(xe)ẋe + GP fP = 0,

−GT
M

∂H
∂x

(x)+ GMMMe(xe)ẋe −GMP fP + ẋe = 0,

−GT
P

∂H
∂x

(x)−GT
MPMe(xe)ẋe −GPP fP + eP = 0.

(31)

Solving the second equation for ẋe yields

ẋe =
(
I + GMMMe(xe)

)−1
(

GT
M

∂H
∂x

(x)+ GMP fP

)
, (32)

under the assumption that det(I + GMMMe(xe)) 	= 0. Substitution of the latter into the first equation of (31) and
some rearrangement of the various terms yields

ẋ =
(
J−GMNe(xe)GT

M
)∂H

∂x
(x)+

(
GP −GMNe(xe)GMP

)
fP,

together with the output equation

eP =
(
GT

P + GT
MPNe(xe)GT

M
)∂H

∂x
(x)+

(
GPP + GT

MPNe(xe)GMP
)

fP,

where Ne(xe) := Me(xe)
(
I +GMMMe(xe)

)−1. Finally, by defining the memristance matrix N(xe) := GMNe(xe)GT
M ,

together with the matrices P(xe) := GMNe(xe)GMP and S(xe) := GT
MPNe(xe)GMP, we obtain

ẋ =
(
J−N(xe)

)∂H
∂x

(x)+
(
GP −P(xe)

)
fP

eP =
(
GP + P(xe)

)T ∂H
∂x

(x)+
(
GPP + S(xe)

)
fP,

(33)

which, together with (32), constitutes an input-state-output port-Hamiltonian system with memristive dissipation
and direct feedthrough. Note that if there are no dependencies between the memristive elements, i.e., if GMM = 0,
then Ne(xe) ≡ Me(xe), and thus N(xe) ≡ M(xe) as should be expected.

For the system of the form (33) the power-balance takes the form

Ḣ(x) = −

(
∂H
∂x

(x)
)T

N(xe)
∂H
∂x

(x)− f T
P

(
GPP + S(xe)

)T fP −2 f T
P PT (xe)

∂H
∂x

(x)+ eT
P fP,

which, by noting that N(xe) can be decomposed into a symmetric and a skew-symmetric part, i.e.,

Ns(xe) :=
1
2
(
N(xe)+ NT (xe)

)
,

Na(xe) :=
1
2
(
N(xe)−NT (xe)

)
,

and by recalling that GPP = −GT
PP and S(xe) = ST (xe), can be reduced to

Ḣ(x) = −

⎛⎝∂H
∂x

(x)

fP

⎞⎠T(
Ns(xe) P(xe)
PT (xe) S(xe)

)⎛⎝∂H
∂x

(x)

fP

⎞⎠+ eT
P fP. (34)

Based on the latter power-balance equation, we conclude that under the condition(
Ns(xe) P(xe)
PT (xe) S(xe)

)
� 0, (35)

for all xe ∈ Xe, the system (33) is again passive with respect to the supply rate eT
P fP and storage function the

Hamiltonian function.
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Figure 5: Port-Hamiltonian system with a single dissipative port containing memristors and linear resistors.

7 Final Remarks
In this paper, we have extended the existing port-Hamiltonian formalism with the inclusion of generalized memris-
tive elements. Besides being a resistive element, a memristor also exhibits dynamics since the associated Ohmian
laws are rather expressed in terms of differential equations. As a result, the state space manifold, as naturally
defined by the storage elements, is augmented by the states associated to the memristive elements, and thus the
order of complexity is, in general, defined by the total number of storage elements and memristors in the system.
However, depending on the physical structure, there can exist constraints among some of the initial conditions. An
example is provided by the mechanical system discussed in Subsection 5.2.

As briefly discussed in Subsection 4.3, the memristive port loses its relevance when the constitutive relationships
of the memristive elements are linear. In such a case a memristor is equivalent to a linear resistor. Since in the port-
Hamiltonian formalism usually only linear resistive elements are included, and memristors, like resistors, dissipate
energy, we can combine both the resistive and memristive ports into a single dissipative port

fD = −De(xe)eD

eD = ẋe,

where ( fD,eD) ∈ FD ×ED and De(xe) is referred to as the dissipation matrix. See also Figure 5.

As pointed out in [5, 10], memristors are just a special case of a much broader class of dynamical systems called
memristive systems. The next step is to study under what conditions these systems can also be captured in the
port-Hamiltonian formalism.

Acknowledgment. The author would like to thank Dr. Johannes G. Maks for his valuable suggestions and the
discussions during the preparation of this manuscript.
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