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Abstract. The exhaust emission regulations and improving safety of cars become strict year by
year, and better fuel efficiency and more comfortable driving response are also desired strongly. The
present engine works are based on the crankshaft angle, i.e. the timing of the spark angle and fuel
injection depend on the crankshaft angle. However, the twist of the crankshaft cannot be neglected in
the measurement of the crankshaft angle and it influences the engine control. In this paper, the influence
of the twist of the crankshaft is studied by using a model of an engine and its simulators. The engine
model is derived by the Projection Method.

1 Introduction
The engine torque control is important for a lot of reasons, e.g. automobile emissions, safety, fuel efficiency,

comfortable driving response and so on. And, in the recent year, high speed and high performance semiconductors
that are able to execute more complex control method are cheaper and cheaper. On these backgrounds, in order
to improve the engine torque control drastically, it is imperative to control and to estimate engines based on the
nonlinear model of the engine. The current engine is controlled by the crankshaft angle, i.e. the spark timing
depends on the crankshaft angle. In the current engine, in generally, the crankshaft angle is measured from a sensor
mounted in the front of the engine. However, the twist of the crankshaft cannot be neglected in the measurement of
the crankshaft angle and it affects the engine control. This problem is pointed out by McKelvey [1] and Kallenberge
[3]. The gap of the combustion timing between the front side and the rear side is occurred because the twist is
generated in the crankshaft of an in-line multi-cylinder engine and it causes undesirable variation of the torques. In
this case, irregularity of rotational speeds causes vibrations. This problem can be solved to measure the crankshaft
angle of every piston. But it is difficult to attach sensors on the every piston, because of the space of sensors,
costs of the engine and so on. So the crankshaft angle is measured on either the first-cylinder or the end cylinder,
and it is important to estimate the engine torques by it. In our recent research, the piston crank mechanism has
been expressed by a nonlinear model[2]. In this study, considering the twist of the crankshaft, the engine model is
enhanced more realistic, and is applied to the high precision engine torque estimation.

In this paper, at first, a nonlinar model of the engine considering the twist of the crankshaft is proposed using
the Projection Method [4]. Then the way to estimate the engine torque is also proposed. The proposed method is
verified by numerical simulations.

2 Modeling
In case of the piston-crank engine, it consists of three parts that are a piston, a connecting rod and a crankshaft.

To model the nonelinar engine model that has the effect of the twist of the crankshaft, the Projection Method which
is proposed by Blajer [4] is used. At first, the modeling of the each engine parts are done, then the single-cylinder
engine model is derived connecting these models by some simple positional constraint conditions. the nonlinear
model of strictly-structured engine is derived using the modeling result of the single cylinder engine is connected
using the crankshaft in considering the twist. The piston crank model and parameters are shown in Figure 1 and
Table 1.

2.1 Dynamical system without any constraints

In the PJ method, the dynamical system without any constraints must be derived at first. The COG position of
the crank part is inside the crank radius. Therefore, we assume that rG = 0.4 r. The generalized coordinate x and
generalized velocity ν are defined as follows:

x =
[
xp zp xc zc xr zr φ θa

]T
, (1)

ν =
[
ẋp żp ẋc żc ẋr żr φ̇ θ̇a

]T
, (2)

where (xp,zp),(xc,zc), and (xr,zr) are the coordinate of the COG of the piston, of the connecting rod, and of the
crank, respectively, φ [rad] is an angle between the connecting rod and the piston and θa[rad] is an angle of the
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Figure 1: Piston crank model

Table 1: Model parameters

lc the length of the connecting rod 0.14665[m]
lg the length of the center of gravity (COG) of the connecting rod 0.1121[m]
r the crank radius 0.043[m]
e offset of the position of the COG of the piston 0.0095[m]
L distance between top dead center (TDC) and center of crank 0.1972[m]
rG the length of the COG of the crank 0.0215[m]
mp the mass of the piston 0.5[kg]
mc the mass of the connecting rod 0.52[kg]
mr the mass of the crankshaft and the crank 9.5[kg]
A the cross-section area of the piston 0.0062[m2]
g acceleration due to gravity 9.81[m/s2]

crank(see Fig.1).
The generalized mass matrix M is defined as follows:

M = diag
[
mp mp mc mc

mr
2

mr
2 Jc Jr

]
, (3)

where Jc and Jr are the inertia moment of the connecting rod and the crankshaft, respectively.

The generalized forces matrix h is defined as follows:

h =
[
0 −mpg−P ·A− cp

dzp
dt 0 −mcg 0 −mrg

2 0 −crθ̇
]T

, (4)

where P is pressure on the piston, cp and cr are the viscous friction coefficient of the piston and the crank, respec-
tively. Therefore, the dynamical system without any constraint is derived as follows:

Mẍ = Mν̇ = h. (5)

2.2 The constraint matrix and the orthogonal complement matrix to the constraint matrix

To model the dynamical system with constraints, the constraint matrix which is the Jacobian of the restricted
matrix and its orthogonal complement matrix is needed. Considering constraints, they are derived as follows. The
positional constraints of the elements of the generalized coordinate x are

θa =
( π

180
θ
)
+sin−1

( e
lc + r

)
, (6)

sinφ =
r sinθa − e

lc
, (7)

cosφ =

√
l2
c − (r sinθa − e)2

lc
, (8)

φ = sin−1
( r sinθa − e

lc

)
, (9)

xp = e, (10)

zp = r cosθa +
√

l2
c − (r sinθa − e)2, (11)

żp = −r sinθaθ̇a − r cosθa (r sinθa − e)√
l2
c − (r sinθa − e)2

θ̇a, (12)

xc = e+(lc − lg)sinφ = e+
(

1− lg
lc

)
(r sinθa − e), (13)

zc = r cosθa +
lg
lc

√
l2
c − (r sinθa − e)2, (14)

xr = rg sinθa, (15)
zr = rg cosθa. (16)
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Therefore, the restricted matrix Φ is

Φ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xp − e
zp −

{
r cosθa +

√
l2
c − (r sinθa − e)2

}
xc −

{
e+

(
1− lg

lc

)
(r sinθa − e)

}
zc −

{
r cosθa + lg

lc

√
l2
c − (r sinθa − e)2

}
xr − rG sinθa
zr − rG cosθa

φ − sin−1
(

r sinθa−e
lc

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0. (17)

Using these constraints, the constraint matrix C of the system is represented by

C =
∂φ
∂x

=
[

C1 | C2
]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 | 0
0 1 0 0 0 0 0 | r sinθa + r cosθa(r sinθa−e)√

l2c−(r sinθa−e)2

0 0 1 0 0 0 0 | −
(

1− lg
lc

)
r cosθa

0 0 0 1 0 0 0 | r sinθa + lg
lc

r cosθa(r sinθa−e)√
l2c−(r sinθa−e)2

0 0 0 0 1 0 0 | −rG cosθa
0 0 0 0 0 1 0 | rG sinθa
0 0 0 0 0 0 1 | − r cosθa√

l2c−(r sinθa−e)2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (18)

The generalized velocity υ is divided into the independent velocity component of υ , i.e. the tangent velocity
υ2, and the other component υ1, that is

υ =
[

υ1
υ2

]
,q := υ2 = θ̇a. (19)

Because Cυ = 0, then

Cυ =
[

C1 C2
][

υ1
υ2

]
= C1υ1 +C2υ2 = 0. (20)

Hence

υ1 = −(
CT

1 C1
)−1 CT

1 C2υ2. (21)

Using Equation (21), the generalized velocity is rewritten as

υ =
[

−(
CT

1 C1
)−1 CT

1 C2
I

]
υ2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
r sinθa + r cosθa(r sinθa−e)√

l2c−(r sinθa−e)2

−
(

1− lg
lc

)
r cosθa

r sinθa + lg
lc

r cosθa(r sinθa−e)√
l2c−(r sinθa−e)2

−rG cosθa
rG sinθa

− r cosθa√
l2c−(r sinθa−e)2

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
θ̇a = Dq. (22)

Therefore the orthogonal matrix D is as follows:

175

Proceedings MATHMOD 09 Vienna - Full Papers CD Volume



D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
r sinθa + r cosθa(r sinθa−e)√

l2c−(r sinθa−e)2

−
(

1− lg
lc

)
r cosθa

r sinθa + lg
lc

r cosθa(r sinθa−e)√
l2c−(r sinθa−e)2

−rG cosθa
rG sinθa

− r cosθa√
l2c−(r sinθa−e)2

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (23)

2.3 Dynamical system with constraint: The single-cylinder model

The motion equation of the single-cylinder engine is derived using the constraint matrix and the orthogonal
matrix. Using Equation (22), the generalized accelaration of the constraint system is

υ̇ = Ḋq+Dq̇ = Ḋθ̇a +Dθ̈a. (24)

Using the constraint matrix C in Equation (18), the constraint dynamical system with the constraint reaction forces
is

Mν̇ = h+CT λ , (25)

where λ is the Lagrange multipliers.Substituting Equation (24) into Equation (25), and multiplying both sides of
the equation by DT , the equation is rewriten as

DT M
(
Ḋθ̇a +Dθ̈a

)
= DT (

h+CT λ
)

= DT h. (26)

Because CD = 0, the equation is simplyfied as

DT MDθ̈a = DT (
h−MḊθ̇a

)
. (27)

2.4 Engine modeling considering the twist of the crankshaft

The in-line two-cylinder engine has two pistons, and two pistons are connected by a crankshaft. Using the
previous result, i.e. the single-cylinder engine model, the twistable crankshaft model and appropriate constraint
conditions, the in-line two-cylinder engine model is derived.

2
θ

First-Cylinder

����+����

1
θ

Flywheel

Second-Cylinder

Figure 2: Two-cylinder engine model

First-Cylinder Second-Cylinder

1
θ 2

θ
Crankshaft

K

Q

Figure 3: Crankshaft model of the two-cylinder engine

The agnle of the two pistons are basically shifted 180 degrees, but to consider the effect of the twist of the
crankshaft, we let the angle of the first piston and the second piston θ1 and θ2, respectively(See Fig.2). Using
Equation (27), the motion equation of the first-cylinder and the second-cylinder are derived as follows:
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DT
1 MD1θ̈1 = −DT

1 MḊ1θ̇1 +DT
1 h1, (28)

DT
2 MD2θ̈2 = −DT

2 MḊ2θ̇2 +DT
2 h2, (29)

where M is the generalized mass matrix of the single-cylinder engine model, Di is the orthogonal complement
matrices to the constraint matrix, hi is the generalized forces, the subscription 1 implies first-cylinder’s one and 2
implies second-cylinder’s one, respectively. Metal rigidity of the crank shaft is expressed by the spring constant
K and the damping constant Q. Using these constants, the twist of the crankshaft is taken into consideration(See
Fig.3). To consider the assumption of the crankshaft,the motion equation of the first-cylinder and the second-
cylinder that are connected by the crankshaft are derived as follows:

DT
1 MD1θ̈1 = DT

1 h1 −DT
1 MḊθ̇1 −K (θ1 −θ2)−Q

(
θ̇1 − θ̇2

)
, (30)

DT
2 MD2θ̈2 = DT

2 h2 −DT
2 MḊθ̇2 −K (θ2 −θ1)−Q

(
θ̇2 − θ̇1

)
. (31)

In addition, the crankshaft is also attached a flywheel, its inertia moment J is included in the second cylinder
engine model. The motion equation of the second-cylinder in consideration of the flywheel is(

J +DT
2 MD2

)
θ̈2 = DT

2 h2 −DT
2 MḊθ̇2 −K (θ2 −θ1)−Q

(
θ̇2 − θ̇1

)
. (32)

Consequently, the motion equation of the two-cylinder engine considering the twist of the crankshaft are derived
as Equation (30) and (32)

3 Torque estimation using the modeling result
To estimate the engine torques using Equation (30) and (32), forcusing on the pressure in the generalized

forces term Equation (4) and the fact that the engine torques are generated by it, Equation(30) and (32) are trans-
formed into as follows:

P1υ (θ1) = a(θ1) θ̇1θ̈1 −b(θ1)+ f (θ1)+ c(θ1) θ̇1
2
, (33)

P2υ (θ2) = a(θ2) θ̇2θ̈2 −b(θ2)+ f (θ2)+ c(θ2) θ̇2
2 + Jθ̇2, (34)

where

υ (θa) =

(
r sinθa +

r cosθa (r sinθa − e)
l2
c − (r sinθa − e)2

)
A, (35)

f (θa) =

(
r sinθa +

cosθa (r sinθa − e)√
l2
c − (r sinθa − e)2

)2

cpθ̇a + crθ̇a, (36)

a(θa) = DT MD, (37)

b(θa) = (

⎛⎝r sinθa +
lg
lc

r cosθa (r sinθa − e)√
l2
c − (r sinθa − e)2

⎞⎠mcg

+

⎛⎝r sinθa +
r cosθa (r sinθa − e)√

l2
c − (r sinθa − e)2

⎞⎠mpg+
mr
4

grg sinθa −Tl), (38)

c(θa) = DT MḊ. (39)

In Equation (33) and (34), both side of the equations are meant engine torques. The left hand side of the equa-
tions are considered as the true values in the sense that the terms are able to measure, and right hand side of the
equations are the equation to estimate the torques. Therefore, to estimate the engine torques, the crank velocities
and accelerations, that are not measure are needed, so the High-Gain-Observer type differentiator that has a better
performance to noisy signals such as the crank angle is used to derive the velocities and the accelerations. Hence,
if the crank angles θ1 and θ2 are able to measure, the engine torques are estimated by Equation (33) and (34).
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4 Simulation result
The simulation of the engine model considering the twist of the crankshaft is performed. The cylinder pressure

is mimicked by the Wiebe function, and the spring constant K is set to 100000[N/m] and the damper constant Q
is set to 1000[Ns/m]. Simulation results are shown in Figure 4 to 7. From the simulation results, the crank angle
velocities, the angular accelerations, and the torques are changed with the cylinder pressure. In addition, the gap
is generated between the angle and the angular velocity of the first-cylinder and the second-cylinder by the twist
of the crankshaft. These results are shown that the motion equation of the engine considering the twist of the
crankshaft is obtained.
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5 Conclusions and Future works
In this paper, considering the twist of the crankshaft, the engine model [6] is enhanced more realistic, and

is applied to the high precision engine torque estimation. The propesed torque estimation equation needs the
every crank angle on the every piston. But in the real engines, it is difficult to measure the every crank angle,
and the crank angle can be measured is either the first-cylinder’s one or the last-cylinder’s one. Therefore, the
other angles that are not able to measure are also estimated from the angle that is able to measure. As a future
work, using the advantage of the model, i.e. accuracy and nonlinearity, we will tackle to design an observer that
estimates torques and unmeasureable angles. As another future work, the proposed nonlinear model and the torque
estimation method will be verified experimentally using the engine for the radio control car(Figure 8 and Figure
9).

Figure 8: Real machine of engine Figure 9: Four-stroke engine
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