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Abstract. In this contribution we study the homogenization of non-periodic stationary heat conduc-

tion problems with homogeneous Dirichlet boundary data by applying the recently developed λ -scale

convergence technique developed by Holmbom and Silfver. λ -scale convergence can be seen as either

being a special case of scale convergence (developed by Mascarenhas and Toader) or of “generalized”

two-scale convergence (developed by Holmbom, Silfver, Svanstedt and Wellander). From either view-

point, it is a possibly powerful generalization of Nguetseng’s classical, periodic two-scale convergence

method. We give a definition of the concept of λ -scale convergence, which is then used to claim a main

theorem on homogenization of certain non-periodic stationary heat conduction problems. The original

part of the contribution starts by defining a two-dimensional “toy model”. We show that the “toy model”

satisfies the right conditions such that the aforementioned main theorem on the homogenization can be

employed. In this way we derive the homogenized problem, i.e. the homogenized thermal conductivity

matrix, and the local problem. The contribution is concluded by giving a numerical example where we

explicitly compute the homogenized thermal conductivity matrix.

1 Introduction
The concept of homogenization theory, i.e. the theory of the convergence of sequences of partial differential equa-

tions, arises naturally from the study of microscale behaviour of systems which can not be examined in a numer-

ically satisfactory manner. When homogenizing a sequence of partial differential equations describing periodical

structures one can use a fairly recent technique referred to as two-scale convergence [4]. The two-scale conver-

gence technique has been generalized to so called scale convergence which covers cases with possibly non-periodic

structures and a general Young measure on the Cartesian product of the spaces associated with the two different

scales [3]. By specifically choosing the Lebesgue measure and employing test functions periodic in the second-

scale variable (defined in the unit cube), scale convergence reduces to the special case dubbed λ -scale conver-

gence [1]. Equivalently, we can see λ -scale convergence as a special case of “generalized” two-scale convergence

with a fixed operator sequence [2]. Utilizing the λ -scale convergence technique it is possible to homogenize e.g. a

sequence of stationary heat conduction equations with homogeneous Dirichlet boundary data, i.e.{
−∇ ·

{
(A◦αh)∇uh} = f in Ω,

uh = 0 on ∂Ω,
(1)

as h → ∞, where A is a Y -periodic heat conduction matrix, f is a heat source function, and αh defines a possibly

non-periodic structure obeying certain restrictions [6]. We assume from now on that Ω is an open bounded set in

RN and that Y is the unit cube (0,1)M in RM , M = N. (The assumption M = N is not necessary in general, but

is convenient to work with in the present context.) In this contribution, which is a short revision of the detailed

preprint [5] adapted for the MATHMOD 2009 Conference Proceedings, we use the results obtained in [6] to

homogenize a simple but illuminating two-dimensional “toy model” stationary heat conduction problem of the

type (1).

2 λ -scale convergence
Following [1, 6], the definition of λ -scale convergence is given by Definition 1 below, where the sequence

{
α̃h}

of operators α̃h : L2
(
Ω;C#(Y )

)
→ L2(Ω) is defined according to

(
α̃hv

)
(x) = v

(
x,αh(x)

)
, x ∈ Ω.

Definition 1 Assume that
{

αh} is a sequence of functions αh : Ω → Y. A sequence
{

uh} in L2(Ω) is said to
λ -scale converge to u0 ∈ L2(Ω×Y) if

〈
uh, α̃hv

〉
L2(Ω)

→
〈
u0,v

〉
L2(Ω×Y )

for any v ∈ L2
(
Ω;C#(Y )

)
.

In the special case αh(x) = hx, x ∈ Ω, we see that we get the classical, periodic two-scale convergence. What

kind of basic restrictions do we need to impose on
{

αh} to be able to homogenize (1)? This question leads us

to the notion of asymptotic uniform distribution defined in Definition 2 below. We first assume that each αh is

a continuous bijection RN → RN . We note the fact that this αh is actually an extension of the original αh. Let{
Y j}

be an enumerable covering of RN with unit cubes and
{

Y j
k
}

a finite covering of each Y j
with cubes of
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side length n−1. Suppose Ω has a Lipschitz boundary, then we define Ωh
j =

(
αh)−1(Y j)

∩Ω. Furthermore, we

assume that there is a sequence
{

qh} of finite subsets of Z+ such that Ω =
⋃

j∈qh Ωh
j . We assume that Ωh

j ⊂ Nrh(xh
j)

for some disk Nrh(xh
j) centred at some xh

j ∈ Ωh
j and with radius rh → 0 independent of j,k. Finally, we introduce

Ωh
jk =

(
αh)−1(Y j

k
)
∩Ω. We are now prepared to formulate the definition.

Definition 2 Suppose that for all k and any j ∈ qh such that
(
αh)−1(Y j)∩Ω and ∂Ω are disjoint,∣∣λ(

Ωh
jk
)
/λ

(
Ωh

j
)
−n−N∣∣ < εh, where εh → 0. Then

{
αh} is said to be asymptotically uniformly distributed, ab-

breviated AUD, on Ω.

A fundamental property in the context of “generalized” two-scale convergence is the concept of strong two-scale

compatibility [2]. The operator sequence
{

α̃h} has this property if it is two-scale compatible, i.e. fulfils certain

boundedness properties (with respect to some admissible space), and satisfies some special weak convergence in

L2(Ω). It turns out that if
{

αh} is AUD,
{

α̃h} is strongly two-scale compatible (with respect to the admissible

space L2
(
Ω;C#(Y )

)
) [1]. In Proposition 3 below we will see why the strong two-scale compatibility (and thus

the AUD) property is so important [6]. Firstly, introduce the Banach space X , D
(
Ω;C∞

# (Y )
)
⊂ X ⊂ L2

(
Ω;L2

#(Y )
)
.

Secondly, let Z,Z⊥ ⊂ L2
(
Ω;L2

#(Y )N)
be a Banach space, Z ∩D

(
Ω;C∞

# (Y )
)

is dense in Z, and its orthogonal com-

plement, respectively. Thirdly, define the operator sequence
{

∇yα̃h} by
(
∇yα̃hv

)
(x) = ∇yv

(
x,αh(x)

)
, x ∈ Ω.

Proposition 3 Suppose
{

α̃h} is strongly two-scale compatible with respect to X and that ∇yα̃hv :
(
∇αh)T ⇀ 0

in L2(Ω) for every v ∈ Z ∩D
(
Ω;C∞

# (Y )
)
. Furthermore, let

{
uh} ⊂ H1(Ω) be a bounded sequence. Then, up to

a subsequence, there exist u ∈ L2(Ω) and w1 ∈ Z⊥ such that uh → u in L2(Ω),
〈
uh, α̃hv

〉
L2(Ω)

→ 〈u,v〉L2(Ω×Y ) for
every v ∈ X, and

〈
∇uh, α̃hv

〉
L2(Ω)N →

〈
∇u + w1,v

〉
L2(Ω×Y )N for every v ∈ XN.

Hence, the λ -scale limit (up to a subsequence) of
{

uh} has no dependence in the second-scale variable, and that

the λ -scale limit (up to a subsequence) of the gradient sequence
{

∇uh} gets an extra term w1 containing an explicit

dependence on the second-scale variable.

3 H-convergence
What do we exactly mean by “homogenizing” a sequence of partial differential equations, e.g. those of the type

(1)? Define M (O) to be the set of bounded and coercive N ×N matrix functions in L∞(O)N×N , where O ⊂ RN is

open. Let (1A) and (1B) refer to (1) but with Ah and B, respectively, instead of A◦αh. In Definition 4 we define

the relevant convergence mode in the homogenization procedure.

Definition 4 We say that
{

Ah} ⊂ M (Ω) H-converges to B ∈ M (Ω) if for any f ∈ H−1(Ω) the sequence
{

uh} of
solutions to (1A) satisfies uh ⇀ u in H1

0 (Ω) and Ah∇uh ⇀ B∇u in L2(Ω)N where u ∈ H1
0 (Ω) uniquely solves (1B).

Under which assumptions can we homogenize the stationary heat conduction problem (1)? We introduce a conve-

nient class of sequences in Definition 5.

Definition 5 Suppose that (i)
{

α̃h} is strongly two-scale compatible with respect to a Banach space X as de-
fined above, (ii) there exists a sequence

{
ph}, ph → 0 in H1(Ω), such that ph ∇αh → Π in L2(Ω)N×N, where

Π ∈ L∞(Ω)N×N, and (iii) there exists a Banach space Z as defined above for which ∇yα̃hv :
(
∇αh)T ⇀ 0 in L2(Ω)

for every v ∈ Z ∩D
(
Ω;C∞

# (Y )
)
. Then

{
αh} is said to be of type HΠ

X .

We can now formulate an important theorem on the homogenization of stationary heat conduction problems with

thermal conductivity matrices involving the sequence
{

αh}, see Theorem 6. The main key to prove the theorem is

to utilize the λ -scale convergence result of Proposition 3, see [6] for details.

Theorem 6 Assume that A ∈C#(Y )N×N ∩M (RN), and that
{

αh} is of type HΠ
X , X = L2(Ω;C#(Y )). Further-

more, suppose w1 ∈ Z⊥ and the weak limit u ∈ H1
0 (Ω) of solutions

{
uh} to (1) uniquely solve the homogenized

problem
∫

Ω
∫

Y A(∇u + w1) ·∇v =
∫

Ω f v for all v ∈ H1
0 (Ω) and the local problem

∫
Y A(∇u + w1) ·Π∇yv = 0 for all

v ∈ H1
# (Y )/R. Then

{
A◦αh} H-converges to B satisfying the flow formula B∇u =

∫
Y A(∇u + w1).

Note here that the local problem is effectively parameterized over Ω and that in effect, B is expected to vary

over Ω in general. In the classical periodic case the homogenized thermal conductivity matrix is given explic-

itly as the modified arithmetic mean B =
∫

Y A
(
I + ∇yz

)
, where z ∈ H1

# (Y )/R uniquely solves the local problem

−∇y ·
{

A
(
I + ∇yz

)}
= 0 in Y . In the next section we will study a simple but illuminating example where we can

achieve a corresponding result in the non-periodic case.

4 Homogenization of a two-dimensional “toy model”
Detailed proofs of all original propositions and theorems in this section can be found in the preprint [5] available

in the arXiv database. Consider a simple two-dimensional “toy model” function sequence
{

αh} according to

αh(x) =
(
hx1,hx2|x2|

)
, x ∈ R2, and Ω = (a1,b1)× (a2,b2) strictly included in the first quadrant. Note that in the

x1-direction periodicity is preserved, while in the x2-direction periodicity is violated with an increasing frequency
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for growing x2. The first thing we need to do in order to homogenize with respect to
{

αh} is to verify the AUD

property on Ω.

Proposition 7
{

αh} is AUD on Ω.

Proof. First we label the covering cubes by using natural two-dimensional indices j and k in the obvious manner.

The covering cubes are then mapped into Ω to obtain explicit expressions for Ωh
j and Ωh

jk. We note that the Ωh
j

shrink uniformly so that they can be fit into disks whose radius rh tend to zero. The proof is concluded by noting

that λ
(
Ωh

jk
)
/λ

(
Ωh

j
)
→ n−2. �

We immediately get Proposition 8.

Proposition 8
{

α̃h} is strongly-two scale compatible with respect to L2
(
Ω;C#(Y )

)
.

Proof. Use Proposition 7 together with the observed fact that the AUD property implies the strong two-scale

compatibility property. �

Let us define the diagonal and invertible matrix Π(x) = diag
(
1,2x2

)
, x ∈ Ω, to be employed in Proposition 9 and

henceforth.

Proposition 9
{

αh} is of type HΠ
X , X = L2(Ω;C#(Y )).

Proof. Condition (i) in the definition of type-HΠ
X sequences is exactly Proposition 8. Condition (ii) is easily

verified by noting that it suffices to choose ph = 1/h. Condition (iii) readily follows from defining the Banach

space Z =
{

v ∈ L2
(
Ω;L2

#(Y )2
)

: ∇y · (Πv) = 0
}

. �

The orthogonal complement Z⊥ is derived by utilizing the result on divergence-free functions given below in

Lemma 10 (see, e.g., [4]).

Lemma 10 Let f ∈ L2
#(Y )N be orthogonal to the space of divergence-free functions in C∞

# (Y )N. Then there exists
a scalar potential φ ∈ H1

# (Y )/R such that f = ∇yφ .

Proposition 11 The orthogonal complement of Z in L2
(
Ω;L2

#(Y )2
)

is Z⊥ =
{

Π∇yu1 : u1 ∈ L2
(
Ω;H1

# (Y )/R
)}

.

Proof. First let v ∈ Z and w1 ∈ Z⊥ and use the definition of them being orthogonal noting that v ·w1 = Πv ·Π−1w1.

Use Lemma 10 to obtain w1 = Π∇yu1 for some u1 ∈ L2
(
Ω;H1

# (Y )/R
)
, where some extra care has to be taken

concerning the required function space since in the lemma x ∈ Ω merely appears as a parameter. �

We are now ready to formulate a preliminary homogenization result for our “toy model”.

Proposition 12 Assume that A ∈C#(Y )2×2 ∩M (R2), and suppose u1 ∈ L2
(
Ω,H1

# (Y )
)

and the weak limit
u ∈ H1

0 (Ω) of solutions
{

uh} to (1) uniquely solve the homogenized problem
∫

Ω
∫

Y A(∇u + Π∇yu1) ·∇v =
∫

Ω f v
for all v ∈ H1

0 (Ω) and the local problem
∫

Y A(∇u + Π∇yu1) ·Π∇yv = 0 for all v ∈ H1
# (Y )/R. Then

{
A◦αh} H-

converges to B satisfying the flow formula B∇u =
∫

Y A(∇u + Π∇yu1).

Proof. The claim follows directly from the main homogenization result of Theorem 6 together with Proposition 9

(where we showed that
{

αh} is of type HΠ
X ) and Proposition 11 (where Z⊥ was characterised). �

Note that the local problem is parameterized over Ω. The main original result of this contribution is Theorem 13

which corresponds to the homogenization result mentioned in the end of Section 3. Also in Theorem 13 the local

problem in Y is effectively parameterized over Ω, i.e., there is effectively a local problem to solve in Y for each

point in Ω.

Theorem 13 Assume that A ∈C#(Y )2×2 ∩M (R2). Then
{

A◦αh} H-converges to B given by B =
∫

Y A
(
I + Π∇yz

)
,

where z ∈ L∞(
Ω;H1

# (Y )2
)

uniquely solves the local problem −Π∇y ·
{

A
(
I + Π∇yz

)}
= 0 in Y .

Proof. Let u,u1 be the assumed solutions in Proposition 12 and introduce the ansatz u1 = ∇u · z for some appro-

priate z. The ansatz gives a sufficient homogenized thermal conductivity matrix B =
∫

Y A
(
I + Π∇yz

)
according to

the flow formula in Proposition 12. Note that we must have z ∈ L∞(Ω)2 (parametrically over Y ). To obtain the

local problem, fix some v ∈ H1
# (Y )/R to be used in the local problem of Proposition 12, which is straightforwardly

shown to be is satisfied if
∫

Y Π∇yv ·A
(
I + Π∇yz

)
= 0. Utilizing partial integration and the divergence theorem,

noting that the boundary contribution vanishes, the local problem becomes −
∫

Y vΠ∇y ·
{

A
(
I + Π∇yz

)}
= 0. This

certainly holds true if −Π∇y ·
{

A
(
I + Π∇yz

)}
= 0 in Y , and we have derived the local problem. It remains to

prove uniqueness of the solution to the local problem. This is accomplished by defining a transformed second-

scale variable ŷ(y) = Π−1y, y ∈ Y , parameterized over Ω and defining a gradient operator ∇ŷ = Π∇y. Then the

local problem can be written on the form −∇ŷ
{

Â
(
I + ∇ŷẑ

)}
= 0 in Ŷ with respect to a new function ẑ to solve for

which uniquely determines the desired z. Uniqueness of ẑ follows from the fact that Â ∈C#

(
Ŷ

)
∩M (R2) so that

the uniqueness result in the “classical” case can be employed. �
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Figure 1: The scalar factor of the non-periodic ther-

mal conductivity matrix A◦αh for h = 3. Note that the

mapped upper sub-cells are square-shaped along L .
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Figure 2: The non-vanishing, i.e. diagonal, entries of the

homogenized thermal conductivity matrix B. Note that

there is no x1-dependence, as expected.

5 Numerical illustration of the “toy model”
In order to illustrate the result above, consider A(y) =

(
1 + 9

10
sin2πy1 sin2πy2

)
I, y ∈ R2, and Ω = (δ ,2)2,

δ � 0. Apparently, A ∈C#(Y )2×2 ∩M (R2), so Theorem 13 can be used. The non-periodic thermal conduc-

tivity matrix is
(
A◦αh)(x) =

(
1 + 9

10
sin2πhx1 sin2πhx2

2

)
I, x ∈ (δ ,2)2, see Figure 1. The local problem be-

comes −∇y ·
(
C∇yz

)
= g in Y parametrically over Ω, where C(x,y) =

(
1 + 9

10
sin2πy1 sin 2πy2

)
diag

(
1,4x2

2

)
and

g(x,y) = 9
5
π
(
cos2πy1 sin2πy2,2x2 sin2πy1 cos2πy2

)
. Solving the local problem numerically and then plugging

the solution (one for each x ∈ Ω) for z into the formula for the thermal conductivity matrix B in Theorem 13,

we get vanishing off-diagonal entries and non-vanishing diagonal entries as given by Figure 2. We see that we

have isotropy (i.e., B’s diagonal entries b11 and b22 are equal) for x2 = 1/2, which can be explained heuris-

tically in the following way. When h is large, the periodicity cells are mapped as near-perfect squares along

L =
{

x ∈ Ω : x2 = 1/2
}

, see Figure 1 where this can be glimpsed for a row of upper sub-cells. This observa-

tion together with the fact that A is symmetric in the y1- and y2-directions means that we would expect that the

homogenized thermal conductivity matrix B should be isotropic along L ⊂ Ω, which apparently is the case.

6 Conclusions
In this contribution we have shown how to use the recently developed λ -scale convergence technique to homoge-

nize a simple example of a non-periodic stationary heat conduction problem. The main aim was not to homogenize

with respect to the specific
{

αh} chosen, but to show that it is possible to homogenize problems with the λ -scale

convergence technique to obtain explicit answers concerning the characterisation of the homogenized limit prob-

lem, e.g., an explicit homogenized thermal conductivity matrix B. The λ -scale convergence technique developed

by Holmbom and Silfver clearly opens up a wide range of more “realistic” problems treatable in a similar manner.

The next step would be to find classes of sequences
{

αh} for which homogenization results of the type Theorem 13

can be directly applied. Such a class would e.g. be the important “non-entangled” sequences given by αh = hα for

sufficiently well-behaved α .
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