
FLUIDIZED BED COMBUSTION AND GASIFICATION MODELING AND 
UTILIZATION OF THE MODELS FOR DIAGNOSTICS, CONTROL AND 

DECISION SUPPORT 
 

Anders Avelin and Erik Dahlquist, Malardalen University, Västerås, Sweden 
erik.dahlquist@mdh.se 

 
Abstract: In both gasification and combustion in fluidized beds it is important to keep control over the actual 
process and the sensors. In this paper models for both CFB and BFB for combustion, as well as gasification are 
described, and their utilization for different on-line applications described.  
The mathematical models include the energy and mass balances for all relevant components. The dynamics is 
introduced primarily as change of temperature and chemical composition in a number of inventories. On line 
data is collected from all the sensors and a simulation is run to reach a balanced solution. The balanced values 
are compared to the original measured values and the difference between these is then plotted as a function of 
time for each variable. When the deviation is above a certain level a message is sent to the operators, that 
something may be wrong. This information together with other data is fed to a Bayesian Net, giving probabilities 
for different type of faults. In this way we get a diagnostics and decision support system that can be used also for 
maintenance on demand. When we have the dynamic modeled tuned we can use this to tune a MPC-controller. 
The MPC is run towards the simulator, and the response is used to develop the controller, instead of having to do 
a series of disturbances in the actual plant.  
 

1. Introduction 
 
In both gasification and combustion in fluidized beds it is important to keep control over the actual processes, to 
avoid sintering or blow out of bed material in the actual bed, or in the down comer G-valve. It is also important 
to keep control over the sensors. If the sensors are faulty, you may make the wrong control actions that may 
cause severe problems if you are on the boarder of what is acceptable with respect to economy and 
environmental emissions. Or you will just get poor performance generally, which may cause economic losses 
although less dramatically. 
 
Malardalen University has been working together with power plants like Malarenergy in Vasteras and Eskilstuna 
Energy and Environment in Eskilstuna and vendors like ABB to develop models for both CFB and BFB for 
combustion, as well as gasification.  
 
Malarenergy has a CFB for biomass combustion, 170 MW, and Eskilstuna Energy and Environment a BFB for 
biomass combustion, 95 MW. Malarenergy now is going to build a 200 MW waste gasification plant where the 
produced gas is going to replace coal in an existing coal fired PC-boiler. ABB developed a Black liquor 
gasification process using CFB (now Alstom power technology). All these processes have many common 
functions and thus we have tried to model them using a program Modelica, and then use this program for process 
performance monitoring, diagnostics and model based control. 
 
If we now take a look at what has been done earlier in the area of data reconciliation we can mention some 
interesting papers like Crow et al [1983 och 1986], Sanchez et al [1992] and Romagnoli [1998]. Here methods 
for primarily steady state data reconciliation is presented and applications for chemical industries. Other methods 
and applications have been presented by Holst et al [2004] with a statistical graph-mixture method for fault 
detection, Wang et al [2001] a linear dynamic method applied for a refiner application, Latva-Käyry och Ritala 
[2005] using Kalman filters and moving windows and Avelin et al [2007] a combination of statistical and 
physical models. Applications for power plant applications have been presented by e.g. Avelin [2001], Karlsson 
et al [2004] och Karlsson et al [2007]. Terry and Himmelblau [1992] used an ANN method for data rectification 
and gross error detection in a steady-state process and Genrup[2005] applied an ANN method for turbine 
diagnostics in his PhD thesis work. Also Leibman et al [1992] were trying to do data reconciliation on dynamic 
processes, while they were using nonlinear programming techniques.  

Concerning BN, Bayesian nets, professor Finn Jensen´s [2001] extensive handbook gives a very good overview 
of the technique as such. When it comes to applications for industrial use Weidl´s [2002] PhD-thesis gives 
examples from pulp and paper and metal industry applications on root cause analysis and decisions support on 
process operations and  Widarsson et al [2004] gives an example from power plant operations on decision 
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support for soot blowing of super-heaters in a biomass fuelled boiler. Przytula et al [2003] also have made an 
evaluation of how BNs can be used for diagnostics in other applications. As background to the physical models 
we also can mention some papers of interest:  
Bartusch [2002] Master thesis work on algorithms bed behavior and solids circulation for Boiler 5 at 
MälarEnergi AB. Bernard [1992]  has made experimental investigation and numerical modeling of cyclones for 
application at high temperatures and Boysan and Swithenbank [1982] a fundamental mathematical modeling 
approach to cyclone design. Breitholz [2000] has made an extensive work on heat transfer in CFB-Boilers. 

2. Model description 
 
The mathematical models include the energy and mass balances for all relevant components. The dynamics is 
introduced primarily as change of temperature and chemical composition in a number of inventories. For the 
actual main fluid bed we have one, a second for the G-valve fluid bed and a third one for the steam system.  
 
In this paper we describe the model and the utilization of it and the real life experience when the system is 
operated in the plants. 
 
If we start with the basic functions of the fluidized bed processes, we can separate these into three main areas: 
fluid dynamics of particles in a gas flow, heat transfer, chemical reactions (combustion and gasification) and 
mass transport of reaction components.  
 
Concerning the first area the fluid dynamics of particles in the gas phase we primarily can use simplifications of 
Navier-Stokes equations for this. As we have a two phase flow, and in the case of black liquor also the third, 
liquid phase, the solutions become pretty complex. When we try to add the chemical reactions and heat transfer, 
it becomes very complex, and in reality the problems have to be formulated in a more precise way for each 
single problem to solve. So, although we would very much like to have one single model, it cannot be achieved 
for the time being. 
 
In our applications the focus is on diagnostics, and here the fluid dynamics at a micro level is of lower 
importance compared to the heat transfer and chemical reactions. The macro level of the fluid dynamics is 
influence the heat transfer and too low fluidization velocities can cause agglomerations, and these functions thus 
have to be included in the models. As the perspective is more “macro”, the mass transport of components 
(primarily diffusion primarily) can be treated in a more approximate way.  
 
After defining these limitations, the mathematical equations have been limited to the flowing: 
 
We are not only looking at steady state, but also on the dynamics of the processes. Thus we have included three 
inventories. These are for the gas/solid inventory in the boiler, the gas/solid in the G-valve in the case of the 
CFBs and the water/steam inventory in the steam drum and the circulation loops. There could be more 
inventories, but for our purposes these are the ones making sense to include.  

The change of mass in each inventory for a time step then is described by: 

�m inventory /�t =  � m i,in - � m i,ut     (1) 

where m i,in    is the mass flow of each component i and m i,ut    is the corresponding out flow of each component 
i.     

The change of the concentration  ci of each component  i  in the inventory we get from: 

�c i /�t =  (�c i *m j,in - � c i  *mk, ut  - ri *c i *m j,inventory    )/ m inventory  (2) 

where j is each flow to the inventory and  k all flows out of the inventory.  The chemical reactions are given by 
the third component where the reaction rate is given by ri . The reactions can be both increase of e.g. CO2 or 
decrease of e.g. C through gasification or combustion. The components addressed are 
C(s),H(s),O2,N,S,CO,CO2,H2O(liq),H2O(g),NO2,NH3,H2S,SO2,H2(g), CH4. For combustion only a minor part of 
these are actually needed. For combustion we assume that all reactions go to 100% from C,H,S to 
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CO2,H2O,SO2, while the production of NO2 is related to temperature and oxygen surplus (using a polynom). 
This is assuming more than 100% of relative oxidation. When oxygen is lowered in relation to organics CO is 
increasing using a polynom. 

For gasification reactions we are using polynoms (PLS) produced from experiments made in a pilot plant for 
black liquor gasification. This is giving the gas composition of the product gas as a function of load, relative 
oxidation (e.g. 35% of the oxygen needed for 100% combustion of all organic components), % DS of the feed, 
pressure and reaction temperature. From these figures we then back calculate to get the energy and mass 
balances together. 

The temperature Tinventory in the inventory we determine from the energy balance:   

�Tinventory /�t =  =  (�T j *c i *m j,in - � T k *c i  *mk, ut ) + �H –  

U*A*(T inventory – T utsida)/ m inventory *(� c i * Cp i))   (3) 

Here  �H is the energy released during combustion, U the heat transfer number, A the area of the heat exchanger 
surface and T utsida the temperature at the outside side of the heat exchanger surface. 

The only difference between the BFB and the CFB is that in the BFB there is no recirculation flow of solids 
separated from the gas stream. There is no principal difference between the gasifier and the combustor, except 
for the difference in the chemical reactions. The cyclone separation efficiency is calculated using the stoke´s law 
for rotating flow (centrifugal force). From this we get the deviation speed in the radial direction (vr/): 

dvr/dt= const* R2*(�particle – �gas)*v$
2/r*1/\    (4) 

Here R= the particle radius, �particle and �gas the density of the particle respectively the gas, v$
 the rotational 

velocity in the cyclone and r is the radius of the cyclone.  \ finally is the viscocity of the gas. The constant 
includes the shape effect of the particle as well as the effect of particles hitting each other. 

The cyclone separation efficiency ^ now is calculated as  

 ^ = (dvr/dt* residence time in cyclone)/ (0.5*r)    (5) 

We assume that the average distance for the particles is half the radius, explaining the =0.5*r. The residence time 
is calculated as the (cyclone volume/gas_flowrate). Principally the separation efficiency is also affected in a 
negative way by flow rate gradients. We have not included it here but it could be described by ^corr = ^*(1- 
const*dQ/dt), where Q is the flow rate. 

Still, there is a difference in the inorganic composition in the black liquor compared to the biomass combustion 
or gasification, and in reality the high amount of sodium salts in the black liquor is given a catalytic effect. Thus 
the reaction rate is significantly higher for black liquor compared to ”normal” biomass for a specific temperature, 
proportionate to the concentration of the inorganic content. This correlation is briefly given as a linear 
interpolation between ”pure wood” and typical black liquor. 

A second limitation is the risk of agglomeration. For black liquor we have seen that the risk for agglomeration is 
increasing from 0.8 m/s down to 0.4 m/s, which is the minimum fluidization velocity. The risk is also at 
temperatures above 720 oC for ”pure black liquor”, while above approximately 850 oC when TiO2 is added.  

For the selective absorption of H2S in relation to CO2 a separate model was developed for the scrubber. This 
includes both transport of gas to a liquid surface and different convections of gas and liquid depending on the 
scrubber design. With a low liquid mixing H2S will be rapidly absorbed, while the CO2 is building up high 
surface concentrations that will hinder more CO2 to be absorbed, as CO2 absorption is slow, and governed by 
kinetics and equilibrium concentrations. From the equilibrium concentrations we can see that an increased pH, 
that is reduced H+, will increase the absorption. By keeping the pH at 10.5 we can get a suitable absorption of 
H2S but still reduce the absorption of CO2. 
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K = [CO2] [H2O]/[HCO3
-][H+]     (6) 

Diffusion of CO2 as well as the reaction rate of CO2 absorption is governed by: 

�[CO2]/ �t = -D �2[CO2]/ �x2 - r*[CO2]    (7) 

Here we see that the CO2 concentration in the liquid close to the gas surface is diminishing due to diffusion and 
reaction of CO2 with NaOH and NaHCO3. When there is a low concentration more CO2 can be absorbed. By 
letting the liquid flow without convection the H2S has been absorbed with a factor 20 higher than CO2 in reality! 

3. Results - utilization of the models for different purposes 
 
Use for diagnostics 
 
On a frequent basis like every 15 minute, every 2 hours or every 12 hours, data is extracted from the process data 
base for all the measured values of interest. The measurements are from all the sensors in the fluidized bed and 
the surrounding systems, but can also be complemented by lab-data or manual added information. These values 
are sent to the mathematical simulation model either as an average value or as a time series of values. In the first 
case we only want to find a steady state balance between different sensors to follow how sensors are drifting 
away, or permanent fouling is building up. In the second case we also can include the dynamics. The measured 
process data are introduced as initial conditions to the model, which then makes a simulation until a balanced 
solution is reached, using simultaneous solvers like DASSL (Differential- Algebraic solver) for the Modelica 
model (Dymola [Elmqvist et al 1995] or Open Modellica).  
 
The typical measurements we have been using are: Bed temperature, temperatures at different positions in the 
exhaust gas train, feed water temperature and flow rates at different positions, steam temperatures at different 
positions, temperatures around the heat exchangers, fuel flow rate and estimated composition, concentrations of 
different components in the exhaust gas, MWel and MWheat produced and air flow rates.  
 
The balanced, calculated values are now compared to the original measured values and the difference between 
these is then plotted as a function of time for each variable.  
 
 

 
 
Figure 1: a) Deviation between calculated (balanced) and measured values for the steam after the Intrex in a 
CFB boiler (Mälarenergy). B) The deviation between calculated (balanced) and measured values for the moisture 
content in the exhaust gas in a CFB boiler (Mälarenergy). 
 
By this we can see how differences in temperature measurements, gas composition, pressures and flows may be 
jumping up and down around an average values, or start to deviate upwards or downwards. When the deviation 
is above a certain level a message is sent to the operators, that something may be wrong. In Figure 1 we can see 
how the deviation in steam temperature after the Intrex (final super heater in a G-valve) is starting to oscillate in 
the middle of a period (a) while the deviation between the measurement and calculated moisture values in the 
exhaust gas is having a trend upwards during the same time period (b). This indicates problem in the Intrex 
fluidization or measurements in the first case, while either drift/fouling of the sensor or faulty assumed 
composition of the input fuel may be the cause in the second case (moisture or hydrogen content may be 
different). 
 
This information together with other data like differential pressures over the beds, ash/bed exchange rate, 
variance in specific measurements like pressure measurements (clogging of the sensors is decreasing it) is fed to 
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a Bayesian Net which is giving probabilities for different type of faults. In this way we get a diagnostics and 
decision support system that can be used also for maintenance on demand. Tendencies for sintering in the 
fluidized bed, risk for irreversible fouling and other important process functions as well as sensor condition are 
included. Here we are using the known relations for risks for sintering or agglomerations due to high temperature 
or low fluidization velocity etc. 
  

 
 
Figure 2 BN related to the high deviation in steam temperature after Intrex in the CFB boiler between calculated 
and measured values. Probable causes are seen in the arrow tree. 
 
Use for Model Based Control 
 
When we have the dynamic modeled tuned we can use this to tune a MPC-controller. The MPC is run towards 
the simulator, and the response is used to develop the controller, instead of having to do a series of disturbances 
in the actual plant. At least an initial tuning can be made in this way. This has been implemented at Eskilstuna 
Energy and Environment at their BFB boiler. This is described more in detail in Avelin et al [2009]. 
 
Use for design of new processes 
 
One of the authors was project manager for the development of a CFB Black Liquor gasification project 
(originally ABB, now Alstom Power). Here we were dealing with solids with melting points from 450 oC and 
upwards. This means that we always have a certain amount of melts, but it will vary with both chemical 
composition and temperature, but not in a very clear way. Because of this it is very important to have a system 
that can diagnose the bed performance, to avoid agglomeration so that the bed collapses. One way of adding 
information is to actually listen to the noise caused by the bed. In the beginning we were just listening to the bed 
noise through a microphone/loud speaker, but this is really making you tired, so thereafter a diagnostic SW tool 
was used instead! By controlling the temperatures in the bed as well as around the G-valve and combining this 
with flow rates of air and fuel, we could determine the mass flow rate through the cyclone leg, which is key 
information needed. All this information together makes the input to the BN on risks for bed agglomerations.  
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The risk for sintering and agglomerations can be correlated to the amount of possible eutectics. If we for instance 
have 2 % KCl in the inorganic and 10 % Na2S we can form an amount of eutectic that is limited by the amount 
of the lower content component. In this case we can get (40+35 +(2*23)+32)/(40+35)= ca 4 % salt melting at the 
lowest melting point, approximately 450 oC. Sometimes it is reported in literature that the lowest melting point 
will cause a disaster, but this is not the case. Instead there is a need for a certain amount of melted components to 
keep the particles together in the FB.  
 
From a principal point of view it would be good to inject the black liquor deep down in the FB and/or 
reintroduce dust collected in a bag house into the bottom of a bed and then let the particles attach to larger 
particles to build agglomerates. If this can be controlled in a good way, the particle burn out can be significantly 
increased. A not too small amount of liquid phase would then be positive, although the position of the melt in the 
particles also is of importance. 
 
We actually were running with up to 4% KCl in the inorganic without any significant problems, and saw that the 
carbon content of the solids went down from 10 to below 2 % in the filter-dust when this was re-circulated back 
to the bed, while still below 1 % in the bottom ash. 
 
A simulation model can be used to optimize the recirculation of dust in a full-scale plant.  
 
From pilot plant experiments we collected a lot of process data. These were then used to make prediction models 
for the gas composition. In the figure 3 below we can see some results for the content of CO, H2 and residual 
carbon as a function of operational conditions. 
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Figure 3 The content of different gas components (H2,CO and H2S) and residual carbon in the ash as a function 
of temperature, relative oxidation and reactor load with respect to black liquor (ton BL/m2,h). 
 
The gas composition is used to determine the final gas composition from the reactor. From this we calculate the 
theoretical energy and material balances for the processes, including also the additional processes with gas 
cooling, absorption of H2S and water in the scrubber etc. From this dimensional studies have been made where 
different alternatives like with and without TiO2 additions, different black liquor concentrations, different 
scrubber selectivity for H2S in relation to CO2 etc. Also different solids recirculation have been studied to get 
the right dimensioning data for filters, cyclones, scrubbers, heat exchangers etc. 
 

4. Discussion and conclusions
 
What we have been showing in this paper is a method for determination of process performance in a way that is 
easy to understand and get an overview of for operators and process engineers. By combining mathematical 
models describing the physics of the process, and correlating different parts and functionalities to each other, 
more information can be gathered from the process compared to only studying a separate sensor as such. On the 
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other hand - by using a BN we can also include information from the specific sensors and even manual inputs of 
interest to get a diagnostic tool indicating the probabilities for different faults or process disturbances. This can 
be illustrated in an informative way by using cause tree structures, where the probable root causes of different 
faults can be followed in a graphical way. By following the evolution of faults the stability and accuracy of the 
predictions can be improved, and by including dynamics we can get a possibility to avoid some conclusions that 
are related to this, and are not “true faults”. 
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