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Abstract. In this paper a difference equation arising from process engineering application is pre-
sented and investigated. Starting out of a discrete stochastic model we introduce a sequence of 
probabilities which expresses reliabilities. Using theorems of probability theory we set up a differ-
ence equation for the sequence, we prove the existence and the uniqueness of the solution under 
certain conditions and in special cases we solve it.  We apply the solutions to determinate appro-
priate initial amount of material.  

1 Introduction 
Intermediate storages play important role in process engineering systems. They connect process subsystems with 
different operational characteristics. One of the subsystems fill some material into the intermediate storage, the 
second subsystem withdraw the material and use it.  It is an important question how much initial amount of ma-
terial is needed to assure the continuous work of the destination system. In order to find the appropriate amount 
of material it is worth investigating the volume of amount of material in the function of the time.  

In most of practical problems the process is rather stochastic than deterministic [3], hence the appropriate 
amount of material can be determine to a given reliability level. The amount of material in the storage describes 
a stochastic process and we would like determine the distribution of its minimum value. In batch/continuous 
systems the distribution function of the maximum value of material in the storage satisfies such integral equa-
tions which can be transformed into integro-differential or differential equation with advances in their arguments 
[4,5,7]. In this paper we investigate the problem in discrete stochastic model and we deal with the probabilities 
of running out of material. We mention that this model can be interpreted as a discrete version of a risk process, 
and the problem detailed corresponds to the level crossing problem in that interpretation [1,2]. 

The structure of the paper will be the following: first we present the problem and the model which will be inves-
tigated, we introduce notations. Then using the methods of probability theory we prove the difference equation 
for the probability of running out of material. We prove the existence and uniqueness of the solution under cer-
tain conditions dealing with the rate of convergence as well. In special cases we give explicit solutions for the 
equation. Using them we present two examples in which we determine the initial amount of material for a given 
reliability level. 

2 The model  
Let consider the following processing system. Some of batch units produce material and some of other units use 
them at different time. The amount of material produced is filled into the intermediate storage which stores it and 
the material is withdrawn from it at constant volumetric rate c. The filling time points are supposed to be ran-
dom.  

Figure 2.1. Intermediate storage connecting two batch subsystems of a  
processing system 

Let 00 =t , and let us denote the times between the consecutive fillings by kt  (k=1,2,3,…), which are nonnega-
tive, independent, identically distributed random variables. The counting process { }0:)( ≥ttN  denotes the num-
ber of fillings up to time t, and is defined as 
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The amount of the k-th filling is denoted by ...2,1, =kYk , and variables ...2,1, =kYk are also nonnegative, 

independent and identically distributed random variables.  Also, we assume that )(tN and { }∞
=1kkY  are inde-

pendent.  
The amount of material being in the intermediate storage can be expressed as  

∑
=

−+=
)(

1
0)(

tN

k
k ctYztV , t≥0 (2.1) 

where 00 ≥z  is the initial amount of material. If we avoid running out of material, then the following inequality 
holds: 0everyfor0)( ≥> ttV , running out of material means 0)( <tV  for some 0≥t . 
 If we investigate probability of running out of material we deal with the function 

)0somefor0()(
)(

1
2 ≥<+−= ∑

=

tYctxPx
tN

k
kψ . 

If distributions of random variables kt  and kY  are continuous, the integral equation for )(2 xψ  in special cases 
is proved in [3, 4] and concerning )(1)( 22 xxR ψ−=  is presented and analyzed. In our previous publications we 
presented integro-differential equation satisfied by )(2 xR , we transformed the equations into integral or differ-
ential equation  with advances in the argument and we solved them. 
Often random variables ...2,1, =kYk  and ...2,1, =ktk  have discrete distributions. In these cases the appropri-
ate probabilities satisfies difference equations instead of integro-differential or differential equations.  In this 
paper we suppose both the time intervals between consecutive filling times and the amount of material have 
discrete distributions with notation )()( jfjtP k == ...2,1,0=j  and )()( igiYP k == , ,...2,1,0=i , further-

more 1=c . Now 0)( ≥jf , 0)( ≥ig , ∑
∞

=

=
0

1)(
j

jf , 1)(
0

=∑
∞

=i

ig . We assume that expectations of the random 

variables are finite, that is ∞<=∑
∞

=

)(
0

jfj
j

fμ , ∑
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0

)(
i

g iigμ .    

We note that 0)0( >f  expresses that more than one filling can happen at the same time and 0)0( >g ex-
presses that sometimes the amount of filled material can be zero (for example failure happens). 
Let )(nx  be defined as the probability of running out of material, that is 

,...)1,0somefor0()(
)(

1

=≤−+= ∑
=

mmYnPnx
mN

k
k , ,...2,1,0=n      (2.2) 

the argument n expresses the initial amount of material.  
We note that 1)0( =x obviously holds. Moreover 1)(0 ≤≤ nx  and the sequence is monotone decreasing. 

3 Difference equation for the sequence )(nx

Theorem 3.1 

Sequence )(nx ...2,1,0=n satisfies the following difference equation: 

∑∑∑
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Proof: Let jY =1  and it =1 . We apply the theorem of total probability with conditions jY =1  and it =1

,...1,0=j , ,...2,1,0=i
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If nj ≥ , then  at time point n  we run out of material. If nj <  and the amount of the filled material is i, then the 
running out of material has not happened to the first filling, and process will be renewed. Amount of material 
being in the storage is ijn +− , this corresponds the initial amount of material if the process would begin at time 
point 1t . Hence  (3.2) equals  
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We draw the attention that Eq. (3.1) is significantly different from the difference equation satisfied by the se-
quence of probabilities expressing overflow probabilities in sizing intermediate storage, presented in [8]. 

4 Existence and uniqueness  of the solution of Equation (3.1)  

Theorem 4.1 

If fg μμ > , and ∑
∞

=

−

nj

n jf )(1τ is bounded with some 10 1 << τ then there exists a 0τ , 10 01 <≤< ττ   for 

which  the solution of Eq.(3.1) )(nx  with property  Knx n
0)( τ≤ , RK ∈  is unique. 

Proof: First let multiply Eq. (3.1) by nτ   with 11 << ττ . 

Introduce notation )()( nxny nτ= . Sequence )(ny ...2,1,0=n satisfies the following difference equation: 
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Let us introduce the operator (.)τT  by the following definition  
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(.)τT  is an operator  mapping from set of the bounded sequence to the set of bounded sequences. Furthermore
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igijfjH μμ , there exists a 10 * << τ  for which 1)( <τH , 1* <≤ ττ . 

Choose ),max( *
10 τττ = . As 1)( 0 <τH , hence (.)

0τT  is a contraction and the set of bounded sequences is com-
plete, then there is a unique solution of Eq.(4.1) in the set of bounded sequences. As a consequence, there is a 
unique solution of  Eq.(3.1) with property Knx n

0)( τ≤ . It means that there is a unique exponentially bounded 
solution to (3.1). 

The solution of (3.1) in the set of bounded sequences is not unique, as 1)( ≡nx  is a solution and according to  
the previous statement under some condition we have an exponentially bounded solution as well. We will see 
explicit examples as well in among the special cases. But if  fg μμ > , then applying technique presented in [5] 

one can prove that the sequence defined in (2.2) have the following limit property: 0)(lim =
∞→

nx
n

.  

We have the conjecture, but unfortunately we could not prove up to now, that the solution of (3.1) is unique in 
the set of sequences tending to zero. If this conjecture is true, then Theorem 4.1 states that )(nx defined in (2.2) 
tends to zero with exponential rate under the assumption of Theorem 4.1. This is underlined by the explicit solu-
tions in special cases as well. 

5 Explicit solutions for special cases 

In this section we give analytical solutions for Equation (2.2) in the special case when the time intervals between 
the consecutive fillings have geometric distribution. 

In insurance mathematics in the continuous case, exponential distribution for the consecutive filling times is very 
important and often investigated, this model is called compound Poisson risk process [9]. As the discrete ana-
logue of the exponential distribution is the discrete geometrical distribution, we solve the difference equation in 
this special case.  

Theorem 5.1  

Consider the special case ,...2,1,0,)1()( =−= jffjf j , supposing that 11)0(0 <−=< ff . If gf μμ < , then 

there exists a solution of Eq.(3.1) of the form nnx μ=)( , where 10 << μ . If gf μμ ≥ , then there is no solution 

of Eq.(3.1) of form nnx μ=)( , where 10 << μ . 
Proof:  
Let us try to find a solution of Eq.(3.1) in the form nnx μ=)( . Substituting it into Eq.(3.1) we get 

∑∑∑
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0
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By elementary computations one can see that μ≠f . Using this fact when summarizing, after summing up and 
arranging Eq.(5.1) we get 

( ) 0)1)(((
0

1 =−−−− ∑
∞

=

+ figff
i

inn μμμ (5.2) 

As Eq.(5.2) has to be hold for any values Nn ∈ , hence the following characteristic equation has to be satisfied: 
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We note that this equation is the discrete analogue of the equation (14) presented in [7]. 

It can be easily proved that 0)0( <k , 0)1( =k , )1)(()1(1)(
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, we can consider two different cases. 

I. gkfk YEtE μμ =<= )()(  that is 0)1(' <k . Now there exists a 10 << μ  for which 0)( =μk . )()( kk YEtE <
expresses that the expectation of the amount of material filled into the storage during unit time interval is more 
than the material withdrawn from the storage during unit of time.  
II. gkfk YEtE μμ =≥= )()(  that is 0)1(' ≥k . In this case, if 0)( =μk  for any 10 << μ , then 0)( ≡νk  for 

1≤≤νμ  which is a contradiction. Hence in this case there is no solution of Eq.(5.3) in (0,1). 

We note if gf μμ <  with  ,...2,1,0,)1()( =−= jffjf j 11)0(0 <−=< ff  conditions of Theorem 4.1 hold 
hence unique exponentially bounded solution exists.
  
Special case 1. Let us consider the case ,...2,1,0,)1()( =−= jffjf j , assuming that 11)0(0 <−=< ff . If 

⎩
⎨
⎧

≠
=

=
10
11

)(
iif
iif

ig , what is valid in the case of constant 1=kY , then the characteristic equation (5.3) is 

0)1()( 2 =−−−= ffk μμμ .  Now 11 =μ , 
f

f
−

=
1

2μ  . If 1=< gf μμ , then 12 <μ , in the opposite case 

12 ≥μ .  

Special case 2. Let us consider the case ...23,1,0,)1()( =−= jffjf j with 11)0(0 <−=< ff , and let 

0,)1()( ≥−= iggig i , with 10 << g . Then the characteristic equation is expressed as 

)1)(1()()(
0

fggfk
i

i −−−−= ∑
∞

=

μμμμ . As the case 1=gμ  leads us to a contradiction, we can make computa-

tions only for 1≠gμ . Arranging the characteristic equation we get 0))1)(1(1(2 =−−−−++− ffggfg μμ . 

This equation has again two positive solutions, namely 11 =μ  and 
g

gfgf

22

−−+
=μ . 12 <μ is satisfied if 

and only if  gf μμ < , that is gf < . 
We note that one can prove that each of the bounded solutions of special cases 1 and 2 has a form 

nccnx μ21)( +=  where 121 =+ cc . If the limit of the solution has to be zero, then we will have a unique 
bounded solution for Eq.(3.1) in these special cases assuming gf μμ < . This fact coincides with our conjecture 
given in the previous section, namely the solution is unique in the set of sequences tending to zero. 

We can summarize our results in the followings: 

Theorem 5.2 

Let ,...2,1,0,)1()( =−= jffjf j   11)0(0 <−=< ff , and  
⎩
⎨
⎧

≠
=

=
10
11

)(
iif
iif

ig  and assume 1<fμ , that 

is 5.0<f . Now )(nx  defined by (2.2) can be expressed as  

1598

I. Troch, F. Breitenecker, eds.      ISBN 978-3-901608-35-3



n

f
fnx

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−
=

1
)( , ,...2,1,0=n         (5.4) 

Let ,...2,1,0,)1()( =−= jffjf j   11)0(0 <−=< ff , and 0,)1()( ≥−= iggig i , with 10 << g  and as-

sume gf < . Now )(nx  defined by (2.2) can be expressed as  
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6 Computational examples 

Finally we show some computational examples which illustrate our results. 

First we choose ,...2,1,0,)1()( =−= jffjf j 15.1/1=f , 0,)1()( ≥−= iggig i , with 11/100 =< g . These 
parameters corresponds to the parameters of the process presented in [6] on Figure 3. 

Now gf < . One can see the probabilities of running out of material applying (5.5), and the  probabilities pre-

sented in [6] on Figure 3, namely the function 
x

c g
fexRx

)1(

22 )(1)(
μ

μψ
−−

=−=  according to the formula (15) in 
[6]. One can state that there are small differences between the numerical results. 
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Figure 6.1.  Analytical solution of Eq. (3.1) )(nx  (*) in case of discrete  geometrical distribution of kt , kY   

and the underflow probabilities )(1 2 xR−  (__) in case of exponential distribution  of kt , kY

We use this example to determine the initial amount of material appropriate to the reliability level 0.95. 

If we want to know the smallest n for which the probability of having enough material is at least 0.95,  we have 
to find the smallest n  for which 95.0)(1 ≥− nx .  If you use geometrical distribution for the distribution of con-
secutive filling times and the amount of material with the above given parameters, we get 
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=  ..2,1,0=n , hence 68=n , as it can be seen on the Figure 6.1. 

Let our second example be the following: ,...2,1,0,)1()( =−= jffjf j with 8.0=f , and let the distribution 
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In this case we do not have explicit formula for )(nx .  But applying Theorem 5.1. we know that there exists 
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solution in form nnx μ=)( , and μ  is the solution of  Eq. (5.1). This equation can not be solved analytically in 
this case, hence we solved it numerically. We get 0.9422=μ , and the solution )(nx  can be seen on Figure 6.2.  
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Figure 6.2. Solution of Equation (3.1) )(nx  in case of geometrical distribution of  kt  and binomial distribution of kY  . 

If we would like to determine the initial amount of material appropriate to the reliability level 0.95, we have to 
determine the smallest n  for which 95.0)(1 ≥− nx  and we get .51=n

7 Summary  
A discrete mathematical model is presented and analyzed for sizing intermediate storages to a given reliability 
level. First we introduced the probabilities of running out of material in the function of initial amount of material 
as a sequence. We set up and proved the difference equations satisfying by the probabilities. We proved the 
existence and the uniqueness of the solution in the set of exponentially bounded solutions under some conditions 
and we presented an example when the bounded solution is not unique.  We solved the equation analytically in 
special cases and used the analytical solution for solving the original sizing problem. We compared the analytical 
solution of the discrete model to the analytical solution of the appropriate model with continuous distributions 
and the coincidence of the results enforces that the discrete model can be applied as an approximation of the 
more complicated continuous model.  
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