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Abstract. A flexible solution method for the initial-boundary value problem of the temperature field
in a one-dimensional domain of a solid with significantly nonlinear material parameters and radiation
boundary conditions is proposed. A transformation of the temperature values allows to isolate the
nonlinear material characteristics into a single coefficient of the heat conduction equation. The Galerkin
method is utilized for spatial discretization of the problem and integration of the time domain is done
by constraining the boundary heat fluxes to piecewise linear, discontinuous signals. The radiative heat
exchange is computed with the help of the Stefan-Boltzmann law, such that the ambient temperatures
serve as system inputs. The feasibility and accuracy of the proposed method are demonstrated by
means of an example of heat treatment of a steel slab, where numerical results are compared to the
finite difference method.

1 Introduction
In process control applications, there is a need for mathematical models which are both computationally inex-
pensive as well as reliable in terms of accuracy and convergence. These requirements are particularly important
for models to be used in real-time applications like trajectory planning, optimization, or control. Motivated by
these needs, a method to determine the transient temperature field in a one-dimensional domain of a solid with
significantly nonlinear material parameters and radiation boundary conditions is proposed. The approach origi-
nates from an application in the steel industry, where slabs or rolled products are to be heat-treated or reheated
according to specific temperature trajectories [17]. However, by analogy, the method can be applied to other
diffusion-convection systems described by parabolic initial-boundary value problems.

The paper is organized as follows: Section 2 starts with a brief review of the heat conduction equation (strong
formulation) with nonlinear material parameters and Neumann boundary conditions, followed by a transformation
of the temperature such that the nonlinearity is isolated into a single parameter of the parabolic problem. There-
upon, the Galerkin Method (GM) based on the weak formulation is employed to derive a low-dimensional lumped
parameter system, and a time integration method is proposed which allows for piecewise linear, discontinuous
input signals. Finally, the boundary conditions are supplemented by elementary laws of thermal radiation. The
feasibility and the accuracy of the proposed method are examined by means of an example of heat treatment of a
steel slab in Section 3. For comparison, also the Finite Difference Method (FDM) is applied to the problem under
consideration. A brief overview of the assumptions and approximations utilized in this work is given in the final
Section 4.

2 Theoretical concept
2.1 Heat conduction problem with Neumann boundary conditions

y
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q+(t)

q−(t)
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T+w(t)

T−w(t)

Figure 1: An infinitely extended solid with radiation boundary conditions.

Let T (y, t) be the temperature field in a solid defined along the spatial dimension y with y ∈ D� [−L/2,L/2], as
shown in Figure 1. Here, y is a Lagrangian coordinate, and the absolute temperature T is considered constant
along any direction orthogonal to y. The heat flux q(y, t) inside the solid is determined by the properties of the
material, the temperature gradient, and the boundary conditions at y = −L/2 and y = L/2. In this analysis, neither
heat sources nor heat sinks inside the solid D are considered.
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The heat conduction process can be defined by the diffusion law [1, 10]

ρcp
∂T (y, t)
∂t

=
∂q(y, t)
∂y

=
∂

∂y

(
λ
∂T (y, t)
∂y

)
y ∈

(
−

L
2
,

L
2

)
, t > 0 (1a)

with initial conditions
T (y,0) = T0(y) y ∈ D (1b)

and Neumann boundary conditions

q
(
−

L
2
, t
)
= −λ

∂T (y, t)
∂y

∣∣∣∣∣
y=−L/2

= q−(t) t > 0 (1c)

q
(L

2
, t
)
= −λ

∂T (y, t)
∂y

∣∣∣∣∣
y=L/2

= −q+(t) t > 0. (1d)

The heat inputs q−(t) and q+(t) define the heat exchange between the solid and its environment. They may depend
on the surface temperatures T (−L/2, t) and T (L/2, t), respectively. Here, the heat conduction problem is given in
its strong formulation. Section 2.3 touches upon the corresponding weak formulation, which is used to solve the
problem in Section 2.4 by means of the GM.

In (1), ρ represents the mass density, which may depend on y only. The specific heat capacity cp and the thermal
conductivity λ may depend on y or T or both. However, in this analysis, a homogeneous material, i. e. indepen-
dence of the parameters from y, is stipulated. Moreover, possible dependence of the parameters on the history
of T is disregarded, i. e. cp and λ may only depend on the current local temperature. The nonlinear temperature
dependence of cp and λ renders the partial differential equation (1) nonlinear.
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Figure 2: Temperature dependent material parameters for standard steel with 0.1 % carbon (data adapted from [8]).

An example for the dependence of the parameters on the local temperature T (y, t) is given in Figure 2 for standard
steel (0.1 % carbon). The salient peak of cp corresponds to a phase transition. Throughout this analysis, if temper-
ature dependence is accounted for, data from Figure 2 is used. More information on the temperature dependence
of material parameters may be obtained from [3, 8].

2.2 Transformation of temperature

If the GM were applied directly to (1), generally an implicit differential algebraic equation would be obtained.
Fortunately, a simple transformation of the temperature allows to isolate the nonlinear material characteristics into
a single parameter, as demonstrated in [1] by elimination of the temperature dependence of λ. In an analogous
way, the temperature dependence of cp is eliminated in the sequel, such that the GM will finally furnish an explicit
Ordinary Differential Equation (ODE). The transformation law reads as

T̃ (T )� T̃0+
1
c̃p

∫ T

T̄0

cp(τ)dτ. (2)

It is generally nonlinear and time-invariant. Bijectivity of the transformation is ensured if cp(T ) > 0 ∀T—a con-
dition that is satisfied for all practical purposes. Generally, an analytical expression for the inverse transformation
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T (T̃ ) cannot be given, however, a simple look-up table will be sufficient for computer implementations. The trans-
formed state T̃ is proportional to the specific enthalpy, with the proportionality coefficient 1/c̃p. The constant
parameters T̃0, T̄0, and c̃p may be chosen at will. However, the stipulation

T̄0 = T̃0, c̃p = cp(T̄0) (3)

seems reasonable and will be used hereinafter. Thus, the slope of T (T̃ ) at T̃ = T̃0 is 1. If cp is constant, (2)
simplifies to the identity function.

Application of (2) to the heat conduction equation (1a) yields

ρc̃p
∂T̃ (y, t)
∂t

=
∂

∂y

(
λ(T (T̃ ))

c̃p

cp(T (T̃ ))︸����������������︷︷����������������︸
� λ̃(T̃ )

∂T̃ (y, t)
∂y

)
y ∈

(
−

L
2
,

L
2

)
, t > 0. (4a)

Obviously, q(y, t) = −λ̃(T̃ )∂T̃/∂y = −λ(T )∂T/∂y still defines the heat flux density, such that the transformation of
the boundary conditions (1c) and (1d) simply yields

−λ̃(T̃ )
∂T̃ (y, t)
∂y

∣∣∣∣∣∣y=−L/2
= q−(t) t > 0 (4b)

−λ̃(T̃ )
∂T̃ (y, t)
∂y

∣∣∣∣∣∣y=L/2
= −q+(t) t > 0. (4c)
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Figure 3: Transformation of temperature and transformed heat conductivity for standard steel (0.1 % carbon).

Figure 3 shows the temperature mapping and the transformed heat conductivity λ̃ if the material parameters from
Figure 2 and T̄0 = 273K are used. The temperature axes are equally scaled.

2.3 Weak formulation

As a basis for the GM, the sequel shows the transformation of the heat conduction problem to its equivalent weak
formulation. LetD be a differential operator defined as

D(T̃ )� ρc̃p
∂T̃
∂t
−
∂

∂y

(
λ̃(T̃ )
∂T̃
∂y

)
. (5)

Then, (4a) can be expressed as

D(T̃ (y, t)) = 0 y ∈
(
−

L
2
,

L
2

)
, t > 0. (6)
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It is assumed that T̃ (y, t) always satisfies the differentiability requirements induced by the operator D. Consider
the Sobolev space V � H1(−L/2,L/2) and the bilinear form

a(v1,v2)�
∫ L/2

−L/2
v1v2dy : V ×V →�. (7)

Using any test function v(y) ∈ V , the identity a(v(y),D(T̃(y, t))) = 0 ∀ t > 0 must hold. Here, D(T̃ (y, t)) ∈
L2(−L/2,L/2) is required, where L2(−L/2,L/2) is the space of square integrable functions on the interval
(−L/2,L/2). In the usual way (cf. [5, 14]), integration by parts and implementation of the transformed bound-
ary conditions (4b) and (4c) yield the weak formulation

0 = a
(
v(y),ρc̃p

∂T̃ (y, t)
∂t

)
− v

(L
2

)
q+(t)− v

(
−

L
2

)
q−(t)+a

(
∂v(y)
∂y
, λ̃(T̃ (y, t))

∂T̃(y, t)
∂y

)
t > 0. (8)

Compared to (6), (8) induces less restrictive requirements on the differentiability of T̃ (y, t) with respect to y. The
last term in (8) deserves particular consideration because it contains the generally nonlinear function λ̃(T̃ (y, t)).
Assuming for the time being that a(∂v(y)/∂y,∂T̃(y, t)/∂y) � 0, the scalar parameter

λ̄ = λ̄(v(y), T̃ (y, t)) =
a
(
∂v(y)
∂y , λ̃(T̃ (y, t)) ∂T̃ (y,t)

∂y

)

a
(
∂v(y)
∂y ,

∂T̃ (y,t)
∂y

) (9)

can be used to rewrite (8) as

0 = a
(
v(y),ρc̃p

∂T̃ (y, t)
∂t

)
− v

(L
2

)
q+(t)− v

(
−

L
2

)
q−(t)+ λ̄(v(y), T̃ (y, t))a

(
∂v(y)
∂y
,
∂T̃ (y, t)
∂y

)
t > 0. (10)

Note that the parameter λ̄ does not depend on y. It may be interpreted as a weighted mean value of λ̃(T̃ (y, t)). So
far, there is no mathematical approximation, meaning that the solution of (10) equals the solution of the strong
formulation (1) or (6), respectively. For a computer implementation of the method, special care must be taken to
avoid numerical problems if the denominator of (9) is close to zero. For instance, v(y) = const. or T̃ (y, t) = const.
w.r.t. y should automatically result in λ̄ = 0.

2.4 Galerkin method

The GM (cf. [6, 14]) suggests to approximate the exact solution T̃ (y, t) by T̃h(y, t) ∈ Vh with an appropriate finite-
dimensional trial function space Vh � span{h1(y),h2(y), . . . ,hH(y)} ⊆ V . Thus,

T̃h(y, t) =
H∑

i=1
xi(t)hi(y). (11)

The time dependence of T̃ is reflected by the Galerkin coefficients xi(t), which can be summarized in the vector
x(t)= [x1(t), x2(t), . . . , xH(t)]T. The H basis functions hi(y) ∈ Vh are used as trial functions, which have to be linearly
independent. Moreover, Vh can be chosen such that some homogeneous boundary conditions are automatically
satisfied by T̃h(y, t). However, for the considered problem, the boundary conditions are generally inhomogeneous.

Evaluation of (10) for the H trial functions hi(y) (v(y) is replaced by hi(y)) yields an initial-value problem in
form of an explicit ODE for the unknown Galerkin coefficients x(t). Therefore, x(t) are the states of a dynamical
system (lumped parameter system) of order H. A reasonable strategy for obtaining the initial values x(0) = x0 is
to minimize the deviation between T̃h(y,0) and the given initial temperature profile T̃ (T0(y)) weighted by the trial
functions hi(y). Therefore, a(hi(y), T̃h(y,0)− T̃(T0(y))) = 0 ∀ i ∈ {1,2, . . . ,H}. Insertion of (11) and utilization of the
linearity of the operator a(v1,v2) (cf. (7)) yield the linear equation

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
a(h1(y),h1(y)) · · · a(h1(y),hH(y))

...
. . .

...

a(hH(y),h1(y)) · · · a(hH(y),hH(y))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ x0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
a(h1(y), T̃ (T0(y)))

...

a(hH(y), T̃ (T0(y)))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (12)

Since linear independence of the basis functions hi(y) was assumed, (12) can be straightforwardly solved for the
initial state x0.

In the sequel, the proposed approach is explained with a three-dimensional orthogonal basis

h1(y) = 1, h2(y) =
2y
L

, h3(y) =
(2y

L

)2
−

1
3

, (13)
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i. e. H = 3 and T̃h(y, t) is a quadratic polynomial in y. The rationale for this choice is that—given the right initial
condition T̃ (T0(y))—it would allow an exact solution of (4) if λ̃, q−(t), and q+(t) were constant. For an arbitrary
initial condition T̃ (T0(y)), the error would be transient. Even for non-constant material parameters or heat fluxes,
the chosen trial functions prove useful. In Section 3, it will be demonstrated that for the intended application, (13)
facilitates an acceptable balance between computational effort and achieved accuracy. However, adding additional
polynomial trial functions is possible in an analogous way. Corresponding results will be shown in Section 3.

Substitution of (13) and (11) into (10) for v = h1, v = h2, and v = h3 yields

ẋ(t) = A(x(t))x(t)+Bq(t) t > 0 (14a)

with the initial value x(0) = x0, the heat flux inputs q(t) = [q−(t),q+(t)]T, and the matrices

A = −
12
ρc̃pL2 diag

{
0 λ̄(h2, T̃h) 5λ̄(h3, T̃h)

}
(14b)

B =
1
ρc̃pL

diag
{
1 3 15

2

} ⎡⎢⎢⎢⎢⎢⎢⎢⎣
1 1
−1 1

1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦ . (14c)

Note that the ODE (14) is generally nonlinear because A contains the parameters λ̄(h2, T̃h) and λ̄(h3, T̃h) with T̃h
from (11). The computation of these parameters requires two evaluations of (9) at each time integration point. The
favorable property that A exhibits a diagonal structure is lost if H > 3, however, the method proceeds in the same
way.

A substitution of the heat input q(t) in (14a) by the expression for the radiative heat exchange would introduce a
significant nonlinearity to the system because q−(t) and q+(t) depend on the surface temperature T (T̃h(−L/2, t)) and
T (T̃h(L/2, t)), respectively. Therefore, the consideration of radiative heat exchange is postponed until a discrete-
time system is obtained.

2.5 FOH-type time integration method

Any standard numerical ODE solver algorithm for explicit initial-value problems should suffice to integrate (14).
However, the benefit of manual discretization of the system is that usually laborious iterative solver algorithms can
be replaced by algebraic difference equations, which allow rapid evaluation. Consider a discretized time domain
with sampling instants tk ∀k ∈�, which are generally not equidistant, and let Tk = tk+1 − tk be the corresponding
sampling period.

u(t) uk

tt tk−1tk−1 tktk tk+1tk+1 TkTk

q1−
k

q2−
k

q−(t)

a) b)

Figure 4: Shape of input signal, a) ZOH method, b) FOH-type method.

In order to obtain a discrete representation [7, 12] of a state space system like (14), the Zero-Order-Hold (ZOH)
method [7, 13] is frequently applied. ZOH means that any input is forced to a function space which has the step
functions σ(t− tk) ∀k ∈� as a basis, as exemplified in Figure 4.a for some scalar input u(t). Inspired by the fact
that the First-Order-Hold (FOH) method [7, 13] furnishes more accurate results than the ZOH method, a time
integration method capable of piecewise linear input signals is outlined in the following. Moreover, the considered
function space allows for discontinuous input signals, which may occur in process control applications. Sampling
points tk must be set at least at discontinuities of the input signals or their slope. Then, the input q(t) of (14a) can
be defined as

q(t) = q1
k

tk+1 − t
Tk

+ q2
k

t− tk
Tk

for tk ≤ t < tk+1 (15)

with q1
k = [q1−

k ,q
1+
k ]T and q2

k = [q2−
k ,q

2+
k ]T. The meaning of these vectors is illustrated in Figure 4.b for the first

component q−(t). They may be obtained from

q1
k = q(tk), q2

k = lim
τ→0−

q(tk+1+ τ). (16)

The series (q1
k) and (q2

k) are the inputs to the discretized system. In order to facilitate a simple analytical solution of
the ODE (14), it is assumed that the parameters λ̄(h2, T̃h) and λ̄(h3, T̃h) take the constant values λ̄(h2, T̃h(y, tk)) and
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λ̄(h3, T̃h(y, tk)) within each time interval [tk, tk+1). Implementing this approximation, the integration of (14) with
the input (15) readily yields the discrete-time system

xk+1 = Ak(xk)xk +B1
k(xk)q1

k +B2
k(xk)q2

k (17a)

with

Ak = diag
{
1 e

−12λ̄(h2,T̃h(y,tk))Tk
ρc̃pL2 e

−60λ̄(h3,T̃h(y,tk ))Tk
ρc̃pL2

}
(17b)

B1
k = diag

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tk
2ρc̃pL

L
4λ̄(h2 ,T̃h(y,tk))

(
−1+

(
1+ ρc̃pL2

12λ̄(h2,T̃h(y,tk))Tk

)(
1− e

−12λ̄(h2 ,T̃h(y,tk))Tk
ρc̃pL2

))

L
8λ̄(h3 ,T̃h(y,tk))

(
−1+

(
1+ ρc̃pL2

60λ̄(h3,T̃h(y,tk))Tk

)(
1− e

−60λ̄(h3 ,T̃h(y,tk))Tk
ρc̃pL2

))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1 1
−1 1

1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (17c)

B2
k = diag

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tk
2ρc̃pL

L
4λ̄(h2 ,T̃h(y,tk))

(
1− ρc̃p L2

12λ̄(h2,T̃h(y,tk))Tk

(
1− e

−12λ̄(h2,T̃h(y,tk ))Tk
ρc̃pL2

))

L
8λ̄(h3 ,T̃h(y,tk))

(
1− ρc̃p L2

60λ̄(h3,T̃h(y,tk))Tk

(
1− e

−60λ̄(h3,T̃h(y,tk ))Tk
ρc̃pL2

))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1 1
−1 1

1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦ . (17d)

Strictly speaking, (17) is non-causal, since q2
k occurs at the same time as xk+1. Moreover, it is generally nonlinear

because the system matrices depend on T̃h(y, tk). The system is time-variant if the sampling period Tk is not
constant. The favorable diagonal structure of Ak is lost if H > 3.

To show that the FOH integration method [13] is a special case of the approach proposed above, consider a linear
time-invariant system with the transfer function G(s), equidistant sampling, i. e. Tk = const., and a continuous
scalar input. Let, s be the Laplace variable and z the complex variable of the Z-transform. Then, the familiar
transformation equation [7]

Gz(z) =
(z−1)2

z
Z
{
G(s)

1
s2Tk

}
(18)

for the Z-transfer function Gz(z) is obtained. Here, Z{·} represents the transition from the (continuous) Laplace
domain to the (discrete) Z-domain by means of inverse Laplace transformation, sampling of the obtained time
signal, and Z-transform of the resulting series.

The benefit of the proposed integration scheme compared to the classical ZOH or FOH method is that complicated
input signals with non-equidistant discontinuities can be approximated more accurately. Therefore, the analysis is
continued using the discrete-time system (17).

2.6 Radiative heat exchange

The boundary conditions are defined by two decoupled radiation problems in the volumes below and above the
domain D. Consider in Figure 1 the top/bottom wall surface as well as the surface y = ±L/2, which are separated
by a non-participating medium, meaning that any light ray passing the medium is neither scattered nor absorbed
or attenuated. This assumption is acceptable for pure air and if the distances between the considered surfaces
do not exceed a few meters. However, for other media or for hot atmospheres, like in the steel industry, the
assumption is likely to be unjustified (cf. [9, 10, 11]). Frequently, a reliable measurement of the gas temperature
is not available whereas wall surface temperatures can be measured with higher reliability. Consequently, the wall
surface temperatures serve as control inputs, which are commonly governed by cascade control loops. Therefore,
the gaseous atmosphere between the radiating surfaces is disregarded in this analysis. Model parameters, like the
emissivity, are adjusted to compensate at least partially for the error introduced by the restrictive assumption of a
non-participating medium.

Let the two involved surfaces be diffuse gray bodies with emissivities ε±w and ε±, respectively and assume that the
temperature distribution on the surfaces is homogeneous. Then, the net heat flux density between the wall and the
surface y = ±L/2 is obtained as

q±(t) =
σ

ε±+ε±w
ε±ε±w

−1

(
T±w (t)4−T

(
±

L
2
, t
)4)

(19)

where the Stefan-Boltzmann law and Kirchhoff’s law of thermal radiation have been used [9, 10, 11]. Here,
σ = (5.670400±0.000040)×10−8 W

m2K4 is the Stefan-Boltzmann constant. The surface temperature T (±L/2, t) in
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(19) is replaced by its Galerkin approximation T (T̃h(±L/2, t)) = T ([1, ±1, 2/3]x(t)). The evaluation of (19) at the
sampling points tk and tk+1 allows to derive the input values q1±

k and q2±
k of the discrete-time system (17) as

q1±
k =

σ

ε±+ε±w
ε±ε±w

−1

(
lim
τ→0+

(
T±w(tk + τ)

4
)
−T

([
1 ±1 2

3

]
xk

)4)
(20a)

q2±
k =

σ

ε±+ε±w
ε±ε±w

−1

(
lim
τ→0−

(
T±w(tk+1 + τ)

4
)
−T

([
1 ±1 2

3

]
xk+1

)4)
. (20b)

The one-sided limits in (20) are necessary to allow for discontinuous input signals T±w (t). At first sight, this may
seem implausible since surface temperatures cannot jump. However, the approach is suitable for batch processes
or discontinuous process steps, where the solid is quickly shifted into a new environment. Therefore, T±w (t) may
be regarded as an ambient temperature referring to the current environment of the solid.

2.7 Implicit system

Insertion of (20b) into (17a) yields an implicit algebraic equation

xk+1 = f (xk+1) (21)

for the unknown state xk+1. Obviously, f (xk+1) depends on Ak, B1
k , B2

k , xk, q1
k , σ, ε±, ε±w, the transformation T (T̃ ),

and the left-sided limit of T±w(t) at t = tk+1.

For usual parameter values and reasonable choices of the sampling period Tk, f :�H→�H is a local contraction
[2], meaning that it is locally Lipschitz continuous with a Lipschitz constant K ∈ (0,1). Since K� 1 is observed in
most cases, the fixed-point iteration method [2] suggests itself as an iterative routine for solving the implicit equa-
tion. However, its convergence behavior depends on the chosen sampling period and is only linear. Thus, for faster
computation, it is recommended to utilize the Newton-Raphson method, which exhibits quadratic convergence. If
a chosen starting point inhibits the convergence of the Newton-Raphson method, it may be worth returning to the
fixed-point iteration method or reducing the chosen sampling period. Generally, the proposed mathematical model
is favorable insofar as for both iterative solution methods the value of xk proved to be a good starting point to
search for xk+1. Convergence problems have not been observed, even for coarse discretization of the time domain,
as will be demonstrated in the following section.

3 Example problem
The proposed method is used to compute the temperature field in a steel slab which undergoes heat treatment in
some radiative environment as outlined in Figure 1. The influence of the chosen sampling period Tk is studied,
and numerical results are compared to values obtained by the FDM. In conventional reheating furnaces, it takes
approximately 6 h until steel slabs acquire their desired processing temperatures above 1350 K. However, the
reheating time depends strongly on the geometric dimensions and material properties of the slab.

The slab to be analyzed in this example has a homogeneous initial temperature T0(y) = 300K, a thickness of
L = 0.5m, and surface emissivities of ε− = 0.65 and ε+ = 0.75 at the surfaces y = −L/2 and y = L/2, respectively.
The smaller value at the bottom surface may be considered as a compensation for the shade caused by some
support (not shown in Figure 1) which holds the slab in place. Values of the temperature-dependent material
parameters cp(T ) and λ(T ) are defined in Figure 2. The enclosing surfaces have the emissivity ε−w = ε+w = 0.7. Their
temperatures

T−w(t) =
⎧⎪⎪⎨⎪⎪⎩1600K if t < 12h

300K else
, T+w(t) =

⎧⎪⎪⎨⎪⎪⎩1600K if t < 6h
300K else

, (22)

serve as inputs. In real applications, significant differences between the environmental temperatures below and
above the slab, like in the interval from 6 h to 12 h, may occur in hearth type furnaces. However, here, the input
ambient temperatures are chosen to represent a challenging example with respect to the numerical solution of the
problem.

An exact analytical solution of the problem has not been found. Therefore, the results of a standard FDM algorithm
implemented in the Matlab® command pdepe [16] are used as a reference solution. The number of equidistant
spatial grid points is chosen as N = 100, whereas time stepping is adaptive. For time integration, the pdepe
command uses a variable order multistep solver, which realizes Gear’s method [15]. In the following, the deviation
between an approximate temperature result Th and a reference result T will be denoted as ΔT = Th−T .

For comparison, the ODE obtained from the FDM is also integrated with the implicit Crank-Nicolson method [4]
executed at fixed time steps. Like for the proposed FOH-type integration scheme (cf. Section 2.7), the Crank-
Nicolson approach requires to solve an implicit algebraic equation at each sampling instant. It is emphasized that
explicit integration methods, which are computationally easier to handle, would significantly limit the sampling
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time because of possible numerical instability. It is an advantage of the FDM that it can be applied directly to the
heat conduction equation (1), i. e. the transformation proposed in Section 2.2 is not required. To make the results
comparable to the proposed GM with H trial functions, the FDM is computed with N = H equidistant grid points.

0 2 4 6 8 10 12 14 16 18

400

600

800

1000

1200

1400

1600

Th,min, Th,max, from FDM (N = 3, Tk = 60min)
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Figure 5: Input ambient temperatures and minimum, mean, and maximum temperature of the solid.
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Figure 6: Deviation between the approximate mean temperature and the reference solution.

Together with the inputs and the reference solution, numerical results computed by means of both the proposed
GM with the FOH-type integration method and the FDM with the Crank-Nicolson integration scheme are shown in
Figure 5. It contains the minimum, the maximum, and the mean value of the temperature profile for each sampling
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period. To keep the figure uncluttered, only results for a fixed sampling time Tk = 60min are shown. It is possible
to further increase the sampling period, however, the achieved accuracy obviously deteriorates.

Two major sources of inaccuracies are the discretization of the spatial domain and the time domain. Refining the
resolution of only one of these dimensions is less effective than refining the resolution of both dimensions at the
same time. For the GM this would mean to increase H, the number of trial functions, which entails an increase in
terms of the computational load. Therefore, in this analysis, H never exceeds 5.

The deviations ΔTmean between the mean temperatures of the approximate results and the mean temperature of the
reference solution are shown in Figure 6 for various H, N, and Tk. The FDM with small N underestimates the
thermal inertia of the system, whereas with the GM this is only the case for large sampling periods Tk. Evidently,
the improvement from H = 3 to H = 5 is only moderate.

The GM produces the largest deviations right after discontinuous changes of the inputs. However, the practical
relevance of these transient errors is rather marginal. Moreover, the errors can be easily reduced if the sampling
periods Tk are decreased in the vicinity of discontinuous changes of the inputs.

In this analysis, λ̄(hi, T̃h(y, t)) is considered to be constant during the interval [ tk, tk+1) and it depends only on xk
and i ∈ {1,2, . . . ,H}. Therefore, the accuracy could be further improved if both xk and xk+1 were utilized in the
computation of λ̄ for the interval [ tk, tk+1). For simplicity, this idea was not followed in this work.

Normalized CPU timeH, N Tk with GM with FDM
3 60 min 0.1 % 0.9 %
3 10 min 0.6 % 1.4 %
5 6 min 1.4 % 3.0 %

Table 1: Required computation time normalized with respect to the computation time of the reference solution.

The influence of H, N, and Tk on the computation time is summarized in Tab. 1. Generally, the results of the GM
with the FOH-type integration scheme are in terms of both accuracy and computational load superior to the results
of the FDM with a fixed-step integration scheme.

The example problem demonstrates the virtues of the proposed method. The obtained system is low-dimensional—
it has H states. The accuracy achieved with H = 3 is very acceptable for many applications in the steel industry,
even if the sampling times Tk are in excess of 1 h. Variations of the sampling period do not limit the applicability
of the method since each time interval is integrated individually.

4 Discussion
A method for computing the transient temperature field in a solid with nonlinear material parameters subjected to
radiative heat inputs was proposed. Important principles adopted in the course of the analysis are:

• the postponement of nonlinear radiation boundary conditions (19) by employing Neumann boundary condi-
tions (1c) and (1d) until the discretized system (17) is obtained,
• a nonlinear, bijective, time-invariant transformation (2) of the temperature to simplify the consideration of

nonlinear material parameters cp and λ,
• the GM with H = 3 trial functions (13) to derive a lumped parameter system (14),
• and an FOH-type time integration method to discretize the time domain (cf. (17)).

Finally, the implicit algebraic equation (21) is obtained, which can be solved without difficulty.

The most salient modeling assumptions materialized in this work can be summarized as follows:

• The geometries of the solid and the ambient surfaces are considered infinitely large along two spatial di-
mensions. The temperature field is assumed to be constant along these directions. The approximation seems
justified if the length and the width of the solid significantly exceed its thickness L or if many solids are
densely arranged side by side.
• For the formulation of radiation boundary conditions, it is assumed that the surfaces are separated by a

non-participating gaseous medium.
• The surfaces themselves are considered as diffuse gray bodies with homogeneous temperatures and constant

emissivities ε±w and ε±.

However, modeling assumptions are not the only compromise made in this analysis—there are also some signifi-
cant mathematical approximations:
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• The GM suggests the approximation of the temperature field T̃ (y, t) ∈ V by T̃h(y, t) ∈ Vh. V is infinite dimen-
sional, whereas Vh has the finite dimension H. A reasonable choice for the trial functions hi(i ∈ {1,2, . . . ,H})
is vital for minimizing the entailed approximation error.
• It is assumed that λ̄(hi, T̃h) ∀ i ∈ {1,2, . . . ,H} in (14b) takes the constant value λ̄(hi, T̃h(y, tk)) during each time

interval [tk, tk+1).
• The input q(t) is constrained to a piecewise linear signal (15), which may jump at tk. Therefore, sampling

points tk should be set at least at discontinuities of q(t).
• The radiation boundary conditions (19) are only satisfied at the sampling points tk, since they have been in-

troduced after discretization of the time domain. For their computation, the surface temperature T (±L/2, tk)
is replaced by its Galerkin approximation.
• The implicit difference equation (21) is only numerically solved.

Despite these limitations, the proposed method proved to be adequate for many purposes, especially the intended
application in the steel industry.

Compared to the FDM, the GM yields a mathematical structure that is beneficial for control tasks. The mean
of the transformed temperature T̃ and, for H = 2 or H = 3, the symmetry of the current temperature profile are
reflected by the single state variables x1(t) and x2(t) or x1,k and x2,k for the continuous-time or discrete-time
system, respectively. Neglecting the temperature dependence of λ̄(hi, T̃h(y, tk)) in (14b), which, anyhow, is weak,
x1(t) and x2(t) are independent states of (14a), since A exhibits a diagonal structure. Moreover, the structure of B
suggests the regular input transformation

q(t) =
[
q−(t)
q+(t)

]
=

1
2

[
1 −1
1 1

][
q1(t)
q2(t)

]
(23)

to obtain two decoupled systems, where q1(t) controls only x1(t) and q2(t) only x2(t). If the (stable) state x3(t)
is ignored as an output, the two systems are of the single-input single-output type. Compared to the FDM, this
approach significantly simplifies the design of a temperature controller which uses the ambient temperatures as
inputs, because the original multi-input multi-output system (14) disintegrates into two independent single-input
single-output systems. The same input transformation can be applied without effort to the discrete-time system
(17).

Some more advantages of the proposed method are acceptable accuracy with only three Galerkin trial functions
(13), even for large sampling periods, robustness against variations of the sampling time, reliable convergence be-
havior, small model dimensions, and low computational costs. The latter properties may be of particular interest if
the model should be used in real-time applications. Therefore, the proposed method can be suitable for implemen-
tations in trajectory planning, optimization, or control tasks, where constraints on the computing time are often
tight.
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