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Abstract. Crystallization processes are characterized by a close interaction between particle for-
mation and fluid flow. A detailed physical description of these processes leads to complicated high
order models whose numerical solution is challenging and expensive. For advanced process control
and other model based online applications, reduced order models are required. In this work, a reduced
model for a urea crystallizer is developed, using the method of moments for the internal coordinate and
proper orthogonal decomposition for the external coordinate. Simulations are carried out to compare
the reduced model with the detailed reference model.

1 Introduction
Crystallization denotes the formation of solid particles from a solute dissolved in a liquid solvent. Crystallization is
one of the most important processes in chemical and pharmaceutical industry. The majority of chemical products
and even more than 90% of pharmaceutical agents are produced in crystalline form. Furthermore, crystallization
is an intermediate step used for purification in many chemical production processes.

Usually crystal properties like characteristic size or shape determine the quality of crystalline products. Therefore
the main task of design and control of crystallization processes is to generate particle populations with desired
property distributions. Property distributions change due to various physical phenomena like nucleation, i.e. for-
mation of new crystals, crystal growth, breakage or agglomeration. All these effects depend strongly on the
interaction between fluid flow and particle phase. A realistic mathematical model of a crystallization process must
account for transport processes in the liquid phase and in the solid phase as well as for the coupling between both
phases. The model has to describe fluid dynamic effects in up to three space coordinates or external coordinates
and in addition the development of particle populations along one or several internal coordinates like e.g. the
characteristic particle size. The resulting high-dimensional models are very complex. Their numerical solution is
challenging and a subject of current research [1]. For many applications in the field of model based process control
such detailed models are hardly suitable. Instead, there is a need for low order models capable of predicting the
key features of a crystallization process in the relevant operation window with reasonable accuracy. This work
aims at developing such models.

The model reduction process consists of lumping in the external coordinates as well as in the internal coordi-
nates. For both sets of coordinates reduction techniques are available in literature. For the internal coordinates,
the method of moments and its extensions have been widely used [2]. For the external coordinates, reduced-
basis approximation or Proper Orthogonal Decomposition (POD)[3] has been applied successfully, starting from
the pioneering work by Sirovich [4]. It proved to be useful for solving inverse problems or for optimal control
with applications in a wide range of different fields, like nondestructive evaluation of delamination, modelling of
dispersion of pollutants, assessment of welding quality [5], simulation of heat transfer problems [6], or control
of nonlinear flow problems [7] or fuel cells [8]. Different methods for improvements of the POD model reduc-
tion have been proposed recently, e.g. via variational multiscale stabilization [9] or adaptive proper orthogonal
decomposition for the solution of reaction-diffusion problems [10].

This contribution discusses model reduction for the example of a spatially two-dimensional model of a urea crys-
tallizer. The reference model contains incompressible Navier-Stokes equations for the liquid phase. A population
balance equation (PBE) describes the particle phase. Details on the reference model are given in the next section.
The model reduction strategy is presented in Section 3. Section 4 compares simulation results of the reduced
model and the reference model.
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2 Reference model
2.1 Model equations
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Figure 1: (a) Scheme of a continuous crystallizer; (b) simplified 2D geometry of the crystallizer seen from top.

Figure 1 (a) gives a schematic view of a continuous industrial crystallizer. Fresh liquid feed with seeding urea
crystals enters the stirred tank reactor from the left. The seeding crystals grow inside the reactor. At the product
outlet on the right-hand side of the reactor, a mixture of liquid and crystals is continuously removed. To model
the process a simplified two-dimensional geometry is used that is shown in Figure 1 (b). The simplified geometry
neglects spatial gradients in vertical direction, and the stirrer is modeled as a rotating cylinder in the center of the
system. To derive model equations for this process, further simplifying assumptions are made:

• The crystallizer is operated under isothermal conditions.

• The crystals are needles with a time-independent cross-sectional area Ā [11].

• A simple kinetic expression for the size-independent growth rate of the crystals is taken from [12]

• Particle nucleation, breakage, attrition and agglomeration are not taken into account.

The crystallizer’s fluid phase is described by the incompressible Navier-Stokes equations. The continuity equation
and the momentum balance that are expressed by the following system of partial differential equations:

∇ ·u = 0 in (0,T ]×Ω,
ρ u̇+ρ(u ·∇)u = −∇p+ μΔu in (0,T ]×Ω,

(1)

where u := (u v)T is the vector of flow velocities in x− and in y− direction, p is the pressure, μ and ρ are
the fluid viscosity and the fluid density, respectively. The concentration c of the solute is described by a scalar
convection-diffusion equation that results from a component mass balance:

ċ+u ·∇c = DcΔc− rg(c, f ) in (0,T ]×Ω (2)

Dc is the diffusion coefficient. The term rg stands for the mass transfer between fluid phase and particle phase due
to crystal growth. It can be written as

rg(c, f ) =
ρU Ā
MA

G
∫ ∞

0
f dl (3)

where ρU is the density of the crystals, MA is their molar mass, and f is the number density function of the crystal
population.

The particle phase is modeled by a population balance for the particle size distribution that accounts for crystal
growth and convective transport of crystals in space:

∂ f
∂ t

+u ·∇ f =−G
∂ f
∂L

in (0,T ]×Ω× [0,∞) (4)

The population balance depends on time and space and in addition on the particle size coordinate L.

The growth rate [12] is a power function

G =

{
6.04×103

(
c−ceq

ceq

)1.65
μm/s, c > ceq,

0, c � ceq,
(5)
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where ceq is the saturation concentration.

Boundary conditions in space subject to the geometry in Figure 1 (b) are as follows. The boundary Γ1 has a no
slip flow field with an isolation of c and f . The internal boundary Γ2 is a uniformly rotating wall with a velocity ω
that represents a simplified impeller. This imposes the following condition on the velocity field : u = (−ωy,ωx)

T .

Γ2 is an isolation for c and f . The inlet Γ3 has a parabolic velocity profile u =
(
4uins(1− s),0

)T
. The inlet liquid

concentration of the solute at Γ3 is given by c = cin. Further, the feed contains particle seeds with length zero. This
leads to the boundary condition f |L=0 = f in

0 . The outlet Γ4 presents convective outflow of the fluid. The initial
conditions are zero velocity field u(x,0) = 0 and zero concentration and particle size distribution.

A simplified description of the particle phase follows if the size distribution function is replaced by its moments
μk defined as

μk =
∫ ∞

0
Lk f dL for k = 0,1, . . . (6)

Inserting the definition (6) into the population balance (4) results in the following closed equation system for the
first two moments:

μ̇0 +u ·∇μ0 = 0
μ̇1 +u ·∇μ1 = Gμ0

(7)

An obvious physical interpretation can be given for the moments μ0 and μ1: μ0 denotes the total number of
crystals at one point in space, the ratio μ1/μ0 is a measure for the average crystal size.

The use of moments reduces the rate of mass consumption due to crystal growth rg to

rg =
ρU ĀG

MA
μ0. (8)

More complicated population balances including additional phenomena, like, particle breakage or agglomeration
will give a non-closed set of the moments and will require additional treatment like e.g. the application of the
quadrature method of moments, where moments are approximated by the Gaussian quadrature [2, 13].

2.2 Simulation results

Comsol Multiphysics [14] is used to simulate the described crystallizer model and to obtain reference solutions for
the reduced model that will be derived in the following. Parameters used in the numerical simulation are presented
in Table 1.

Table 1: Numerical simulation parameters

Parameter Value Units

μ 10−3 kg/m/s

ρ 103 kg/m3

Dc 0.75×10−9 m2/s

ρU 1335 kg/m3

MA 60.07 g/mol

Ā 4 ×10−13 m2

ceq 10.47 mol/l

cin 11 mol/l

f in
0 1010 1/m3

ω 2π ·10−4 1/s

uin 10−4 m/s
R1 10 cm
R2 3 cm

DA
c,μ0

10−5 m2/s

DA
μ1

10−7 m2/s

The numerical simulation shows that the fluid flow achieves a steady state in 1 second of the simulation time, the
concentration c and the zeros moment μ0 become perfectly mixed in 20 seconds of the simulation time, and the
first moment μ1 attains the steady state in 40 seconds. Figure 2 illustrates the development of μ1 in time by some
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snapshots. One can see that initially crystals with nonzero length exist only close to the inlet on the left-hand side.
The seeding crystals fed to the system move with the fluid flow in a counter-clockwise direction and gradually
gain size. After about 8 s a steady state profile has been achieved. The biggest crystals occur slightly above the
feed point because the crystals in this area have the biggest residence time in the reactor.

t = 0.05 t = 1 t = 2 t = 4 t = 8 t = 200

Figure 2: Development in time of the first moment μ1 with uin = 10−4 m/s

3 Model reduction in space by Proper Orthogonal Decomposition
In this work, Proper Orthogonal Decomposition (POD) has been used to achieve a model reduction in spatial
coordinates. POD has its roots in statistical analysis and is a technique used to reduce multidimensional data sets
to lower dimensions for analysis, it is also named principal component analysis or Karhunen-Loève transform [15].

The velocity field u, the concentration c, and the moments μ0 and μ1 are approximated with a finite Galerkin
projection

u =
(

u
v

)
= ū+u′, ū = 〈u〉, u′ = ∑Muv

i=1 auv
i

(
σu

i
σ v

i

)
, u′|∂Ω = 0,

c = 〈c〉+
Mc

∑
i=1

ac
i σ c

i , μk = 〈μk〉+
Mμk

∑
i=1

aμk
i σ μk

i , and 〈 f 〉= lim
T→∞

1

T

∫ T

0
f dt

(9)

with time dependent coefficients a j
i and space dependent modes σ j

i that represent orthonormal bases for suitable
solution spaces.

The spatial basis functions are obtained from the proper orthogonal decomposition of a reference simulation of
the detailed model that has been described in the previous section. In POD the basis functions σ j(x) are chosen
to maximize the following expression

〈(σ j(x),u(x, t))2〉
(σ j(x),σ j(x))

!= max (10)

with the inner product ( f ,g) =
∫
Ω f g dΩ. The maximization problem corresponds to a constrained optimization

problem for

J[σ ] = 〈(σ ,u)2〉−λ ((σ ,σ)−1) != max (11)

where λ is a Lagrange multiplier. An extremum σ must satisfy

d

dδ
J[σ +δψ]|δ=0 = 2[〈(u,ψ)(σ ,u)〉−λ (σ ,ψ)] != 0 (12)

This is equivalent to solving the integral equation∫
Ω
〈u(x, t)T u(ξ , t)〉σ(ξ )dξ = λσ(x). (13)

So in terms of the POD the optimal basis is composed of eigenfunctions {σ j}∞j=1 of the integral equation (13),
whose kernel is the averaged autocorrelation function

R(x,ξ ) := 〈u(x, t)T u(ξ , t)〉. (14)

The main advantage of the POD is that it produces the best linear representation for an ensemble of functions or
flowfields (snapshots).
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In [4] a procedure called the method of snapshots was developed that reduces the cost of the solution to that of an
eigenvalue problem of size equal to the number of modes we intend to use. The method of snapshots uses the fact
that the autocorrelation function can be expressed as

R(x,ξ ) = lim
M→∞

1

M

M

∑
i=1

uT
i (x) ·ui(ξ ) (15)

where ui(x) = u(x, iτ) is referred to as a snapshot and τ is the sampling time which should be greater than the
correlation time. For the finite number of snapshots M the kernel R(x,ξ ) will be degenerated and eigenfunctions
will correspond to a linear combination of the snapshots

σ i(x) =
M

∑
k=1

α i
kuk(x). (16)

With this assumption, the integral eigenvalue problem (13) in finite-dimensional space is transformed into an
eigenvalue problem

Ri jα i = λiα i (17)

for the symmetric M×M-matrix

Ri j =
1

M
(ui(x),u j(x)) (18)

and the basis functions are

σ i(x) =
M

∑
k=1

α i
kuk(x). (19)

The described model reduction process has been implemented in Matlab [16]. It comprises the following steps:

1. Snapshots are generated by solving the reference model in Comsol and exporting the results to Matlab.

2. Mean values w̄ = 〈w〉 and normalized snapshots w′ = w− w̄ are computed, where w = {u,c,μ0,μ1}.
3. Computation of matrices for 1 � i, j � nw

snap

Rw
i j =

1

nw
snap

(w′i,w
′
j) with (ϕ,ψ) =

∫
Ω

ϕT ψ dx (20)

4. Computation of the basis functions σw = w′V w, where V w are the first nw
ee f eigenvectors of Rw

5. Normalization of σw

6. Computation of coefficient matrices for the reduced model, e.g., for u

Au
ki j = (σu

k ,σ
u
i ·∇σu

j)

Bu,1
ki = (σu

k , ū ·∇σu
i ) Bu,2

ki = (σu
k ,σ

u
i ·∇ū) Bu,3

ki = (σu
k ,Δσu

i )

Cu,1
k = (σu

k , ū ·∇ū) Cu,2
k = (σu

k ,Δū)

(21)

7. Computation of the initial values via projection of w′(0) to the reduced solution spaces

aw
k (0) = (σw,w′(0)), 1 � k � nw

ee f (22)

As a result of the reduction process, one obtains the following low-order ODE model:

ρ ȧu
k = −ρ

[
Au

ki ja
u
i au

j +(Bu,1
ki +Bu,2

ki )au
i +Cu,1

k

]
+ μ

[
Bu,3

ki au
i +Cu,2

k

]
ȧc

k = −
[
Ac

ki ja
u
i ac

j +Bc
kia

c
i +Cc

kia
u
i +Ec

k

]
+(Dc +DA

c )(Fc
k +Hc

kia
c
i )− (σ c

k ,rg(c,μ0))

ȧμ0
k = −

[
Aμ0

ki ja
u
i aμ0

j +Bμ0
ki aμ0

i +Cμ0
ki au

i +Eμ0
k

]
+DA

μ0
(Fμ0

k +Hμ0
ki aμ0

i )

ȧμ1
k = −

[
Aμ1

ki ja
u
i aμ1

j +Bμ1
ki aμ1

i +Cμ1
ki au

i +Eμ1
k

]
+DA

μ1
(Fμ1

k +Hμ1
ki aμ1

i )+(σ μ1
k ,G(c,μ0))

(23)

where the first terms correspond to the correspond to the convective parts of equations, the second parts correspond
to diffusive parts, and the last terms present the nonlinear growth parts. In order to increase numerical robustness,
additional terms with coefficients DA

c , DA
μ0

, and DA
μ1

, which infer isotropic artificial diffusion, are included in the
reduced model.
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4 Simulation results of reduced model
Application of the reduction technique to the reference simulation with uin = 10−4m/s delivers a set of mean
solutions and normalized basis functions for the model variables u, v, c, μ0, and μ1. Figure 3 shows the first basis
functions and mean flows for u and v. Mean values for c and μ0 are constant values cin and f in

0 , and for μ1 the
mean value is the steady-state profile at t = 200 as shown in Figure 2. Results of the reduced model dynamic

u v
ū σ u

1

σu
2 σu

3

v̄ σ v
1

σ v
2 σ v

3

c μ1

σ c
1 σ c

2

σ c
3 σ c

4

σ μ1
1 σ μ1

2

σ μ1
3 σ μ1

4

Figure 3: Mean flows for u and v variables, and normalized basis functions σu, σ v, σ c, and σ μ1

simulation are shown in Figure 4. One can see that after a transient period all variables of the reduced model
go to zero, i.e. the reduced model settles at the correct steady state. The coefficients for the first basis functions
can be interpreted as characteristic time constants of the model. For example, the fluid flow reaches the steady
state in one second, but c and μ0 require around 20 seconds and μ1 needs 40 seconds to attain the steady-state.
The relative errors between the reference and the reduced models under transient conditions have been calculated
and are shown in Figure 5. For the given set of model parameters the reduction error is bounded in time and less
then 1% for all variables. This means that the reduced model is able to reproduce the reference simulation with
good accuracy. However, it is more interesting to study the extrapolation qualities of the reduced model, i.e. its
ability to predict solutions of the reference model that are not included in the snapshots. In order to apply the
reduced model to process control purposes, it is important to have sufficient extrapolation qualities for variations
in operation conditions and for variations in physical model parameters that may change under varying operation
conditions.

The most important operation parameter of the example system is the inlet flow velocity uin. Therefore, in a first
step the quality of the reduced model is tested for varying values of uin. To do this, the reduced model basis
functions are obtained from dynamic snapshots of the reference model for a fixed inlet velocity of uin = 10−4 m/s.
The snapshots are not recomputed, when the inlet velocity changes. However, as the reduced model only computes
deviations from a steady state, it is necessary to compute a new steady state reference value from the detailed
model, if uin changes. This can be done rather cheaply, as no dynamic simulation is involved. In summary, the
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Figure 4: First coefficients ai of the reduced model dynamic simulation
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Figure 5: Relative error plots for uin = 10−4 m/s

variables of the reduced model can be expressed as

w = w̄(uin)+
Mw

∑
i=1

aw
i σw

i , (24)

with a consequent update of the affected reduced model matrices (21). The reduced model’s error dependency on
the parameter uin is presented in Figure 6. The plots in Figure 6 show a mean error in the time interval from 0 to
200 seconds. One can see that the reduced model produces very reliable results for u, c, and μ0, even if the inlet
flow velocity is varied over one order of magnitude. However, the sensitivity of the first moment is considerably
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bigger. A variation of uin by 10 % produces an error of the reduced model roughly in the same order.
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Figure 6: Relative error plots with respect to uin

As an example for a varying physical parameter, the fluid viscosity μ is considered. The fluid viscosity may
change, if the particle density increases and the mixture becomes slurry-like. Figure 7 shows that the extrapolation
quality of the reduced model is quite good here. The error of all variables increases onlly slightly, when the
viscosity is changed. This may be a useful property, when the reduced model is used in a parameter identification
environment in order to identify μ .

5 Conclusions
In this contribution a reduced order model for a crystallizer has been developed by using the method of moments
and Proper Orthogonal Decomposition. The reduced model shows a good agreement with the reference model.
Extrapolation qualities of the reduced model with respect to changes in physical parameters are also quite satisfac-
tory. A reduction in terms of system order by a factor of about 500 is achieved. The reduction of the computation
time for simulation is about factor 5, due to the presence of nonlinear terms in the convection-diffusion equations
that require numerical quadrature during the simulation of the reduced model. The results indicate that a low
number of basis functions can capture the overall system behavior for low Reynolds numbers and sufficiently
large diffusion. Smaller diffusion terms will require a larger number of basis functions in order to capture the fine
details of spatial features of the convective flow.

As a next step, the model will be extended to include nucleation and breakage as well as a non-constant fluid
viscosity that depends on the crystal size. Further, a more efficient treatment of the nonlinear terms is desirable.
Possible approaches may be the use of truncated Taylor series for the nonlinear terms, or the application of the
empirical interpolation method [17]. The latter method is especially promising for reducing the simulation time
because it gives the possibility to calculate all inner products offline.
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Figure 7: Relative error plots with respect to μ
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