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Abstract. The identification of a model structure, i.e., the relationship of model components, and
the usually unknown model parameters are essential to get meaningful deterministic models. Due to
imperfect and limited measurement data to fulfil both requirements can be a challenging task. There-
fore, the Optimal Experimental Design (OED) was introduced to detect some optimal stimuli of the
regarded system, that increase the information content of measurements. For models which are linear
with respect to their parameters, the OED is well known to reduce the influence of measurement noise
to the parameter estimation process and to find conditions that make the difference of competing model
hypothesis more obvious. Unfortunately, in practise the most used models are non-linear with respect to
their parameters. The established methods for the linear case, e.g. the Fisher Information matrix (FIM),
can lead to a crude approximation of the non-linearity that results at best in a sub-optimal choice of the
system stimuli.
The usage of sample based approaches, e.g. Monte Carlo methods, seems to be more suitable to con-
sider non-linear effects, but their inherent computational effort prohibits the application in the frame-
work of Optimal Experimental Design. In this work, the Sigma Point method is used instead, because
its advantages are at least threefold for OED: 1) a more reliable approximation of parameter uncer-
tainties can be achieved, 2) a definition of a novel design criterion for OED becomes possible, and 3)
it provides an efficient and elegant way to take the imperfection of parameter estimation in the field
of model selection into account. All three aspects are demonstrated for the example of a biological
substrate uptake model.

1 Introduction
Complex biological systems can be described and analysed by deterministic models. The process of model devel-
opment requires not only knowledge about the model structure but also about related model parameters θ . Even
with a suitable model structure, parameter identification can be a challenging task. Uncertainty about experimental
data leads to uncertainty about estimated parameters θ̂ , consequently, the estimates can be represented by confi-
dence regions instead of single values. To get meaningful models these confidence regions should be as small as
possible. For this purpose, Optimal Experimental Design (OED) provides new experimental conditions, e.g. the
system stimuli u(t), resulting in more precise estimates.
To define a cost function for Optimal Experimental Design, it is necessary to express the parameter uncertainties
by mathematical terms, leading to the (co)variance matrix Cθ̂ and the mean E[θ̂ ] of the estimated parameters. A
frequently applied method for this is based on the inverse of the Fisher information matrix (FIM) [1]. However,
this method leads in many cases to a poor approximation of the parameter (co)variances and does not provide any
information about the mean. To find a more realistic approximation of the parameter statistics, methods have been
developed, which are based on Monte Carlo simulation as the Bootstrap approach [2] and the Global Sensitivity
Analysis (GSA) [3]. These approaches have a very high computational effort, which prohibits their use in the
framework of OED.
A more suitable approximation can be achieved using the Sigma Point method [4], which has been introduced
recently in the field of OED [5, 6]. Julier and Uhlmann suggested the use of the Sigma Points in order to determine
the mean and (co)variance of a random variable η ∈ R

l from the mean and (co)variance of a random variable
ξ ∈ R

f , where η is related to ξ by the non-linear mapping η = g(ξ ). Adjusted to parameter identification, ξ
represents all available measurement data1, g(·) stands for the complete parameter identification process and η is
the resulting vector of estimated model parameters. By using this analogy, the Sigma Point method can be applied
directly to calculate the mean and the (co)variances of θ̂ .
Moreover, the basic concept of the Sigma Point method enables the investigation of the influence of parameter
uncertainties on simulation results x(t). The determination of confidence regions of the dynamic states becomes
possible and can be used to evaluate novel cost functions for the OED process. Beyond this, the confidence regions
of the states provide an efficient and elegant way to take the imperfections of parameter estimation in the field of
model selection into account. In the next section, general concepts of OED are introduced. After this, the potential
of the Sigma Point approach in the field of Optimal Experimental Design is demonstrated by a simple substrate
uptake model.

1Measurements of m components at K time points ( f = m ·K)
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2 Methods
2.1 Parameter Identification and Parameter Uncertainties

Ordinary differential equations (o.d.e.’s) Eq.(1) are widely used to describe the behaviour of dynamic systems.

dx(t)
dt

= f [x(t),u(t),θ ] (1)

In Eq.(1) the o.d.e system is a function of the dynamic states x(t) ∈ R
n, the system input u(t) ∈ R

r, and model
parameters θ ∈R

p. In addition, the output function ŷ(t) ∈R
m Eq.(2) defines states or combinations of states that

are measurable, where v ∈R
m denotes measurement noise.

ŷ(t) = h [x(t),u(t),v(t),θ ] (2)

Even with a detailed knowledge of the underlying processes, the model parameters θ are usually a priori unknown
and have to be identified. For this purpose, a cost function can be defined by Eq.(3), which weights the difference
of simulation results ŷ(t) and measurement data y(t) by the inverse of the measurement variance matrix Cy.

J(θ̂) =
1

2

(
y− ŷ(x0,u, θ̂)

)T
C−1

y
(
y− ŷ(x0,u, θ̂)

)
(3)

By minimising this cost function, estimates of the unknown parameters θ̂ are generated. In practise, measurement
noise v and a limited number of measurement data lead to parameter uncertainties that can be expressed by the
mean square error (MSE) matrix:

MSEθ̂ = E
[(

θ̂ −θ
)(

θ̂ −θ
)T

]
(4)

= Cθ̂ +(E[θ̂ ]−θ) · (E[θ̂ ]−θ)T (5)

= Cθ̂ +bi ·biT , (6)

where E [·] is the expected value of a random variable, Cθ̂ represents the (co)variance matrix of the estimates and
bi is known as the bias. Obviously, the mean square error matrix would be a perfect measure of the reliability of
the estimates, but unfortunately, for the definition of the MSEθ̂ matrix, the ‘true’ parameter vector θ is needed.
Therefore, one main part of OED is to find an appropriate approximation of MSEθ̂ .

2.2 Approximation by the Fisher Information matrix

A frequently applied method to get an approximation of the mean square error matrix MSEθ̂ is based on the Fisher
Information matrix Eq.(7). This expression weights the parameter sensitivity matrix Eq.(8), i.e., partial derivation
of the output function ŷ(t) to the parameters θ , by the inverse of the measurement variance Cy over several time
points tk.

FIM = ∑
tk

ST
tk ·C−1

y ·Stk (7)

Stk =

[
∂ ŷ
∂θ

∣∣∣∣
tk

]
(8)

The inverse of FIM related to the Cramer-Raó inequality Eq.(9) provides a measure of the parameter (co)variance
matrix Cθ .

Cθ ≥ ∂E
[
θ̂
]

∂θ
FIM−1 ∂E

[
θ̂
]T

∂θ
(9)

The equality of Eq.(9) only holds, if (i) the measurement errors are additive, (ii) the model is linear in its parameters,
and (iii) a minimum variance unbiased estimator is available. Especially, the last two requirements are not fulfilled
in practise. As the FIM does not give any information about E

[
θ̂
]
, the estimate is assumed to be unbiased, i.e.,

E
[
θ̂
]
= θ , leading to the simplified approximation of MSEθ̂ ,FIM Eq.(10).

MSEθ̂ ,FIM ≈ Cθ ≥ FIM−1 (10)

At the best Eq.(10) provides a lower bound of the parameter uncertainties. An Optimal Experimental Design, that
is based on this approximation is likely to end in a suboptimal result, i.e., parameter uncertainties can be reduced
but there is still potential for a further reduction. Alternative approaches are required.

2390

I. Troch, F. Breitenecker, eds.      ISBN 978-3-901608-35-3



2.3 Approximation by the Sigma Point method

To get an appropriate approximation of MSEθ̂ , the non-linear relation of parameters θ to the model and also the
imperfection of the used optimiser have to be taken into account. For this purpose, Julier and Uhlmann suggested
the use of the so-called Sigma Points, i.e., samples of ξ , in order to determine the mean and (co)variance of a
random variable η ∈R

l from the mean and (co)variance of a random variable ξ ∈R
f , where η is related to ξ by

the non-linear mapping η = g(ξ ). In the context of parameter identification ξ represents all available measurement
data:

ξ = [y1(t1), . . . ,y1(tK),y2(t1), . . . ,y2(tK), . . . ,ym(t1) . . . ,ym(tK)]T f = m ·K,

g(·) stands for the complete parameter identification process and η is the resulting vector of estimated model
parameters. By using this analogy, the Sigma Point method can be applied directly to calculate the mean and
the (co)variances of θ̂ . In contrast to other sample based approaches, e.g. Monte Carlo methods, the Sigma
Points are deterministically chosen by the statistical information about the measurement imperfection. This kind
of intelligent sample selection leads to a dramatical reduction of the required sample number (2 · f + 1) and the
related computational effort. As shown in [6], the following approximation of MSEθ̂ by the Sigma Point method
can be found:

MSEθ̂ ,SP ≈ Ĉθ̂ + b̂i · b̂i
T
, (11)

where Ĉθ̂ and b̂i are determined approximately by the statistics of η . In contrast to MSEθ̂ ,FIM , this approximation
is not merely only a lower bound of parameter uncertainties related to an idealised optimiser, but rather a more
reliable estimation of parameter deviations that considers the bias and all other imperfections of the used optimiser.

2.4 Minimising the mean square error matrix

If the mean square error matrix indicates, that the estimated parameters θ̂ possess quite large uncertainties, i.e.,
high values of the diagonal elements of MSEθ̂ , the framework of OED tries to reduce them iteratively. For this,
an optimisation problem has to be solved, that increases the measurement information content by finding optimal
stimuli of the regarded system. As a matrix can hardly be used to define a cost function for a numerical optimiser,
well known criteria [7] exist leading to a scalar measure of MSEθ̂ . Unfortunately, no advice can be given which
kind of scalar measure is the most beneficial approach for OED. Therefore, only the so-called modified E-criterion
is introduced Eq.(12), as it provides an a-priori known optimum value (ΦE∗,opt(MSEθ̂ ) = 1) and an easy to visu-
alise assessment of the result of OED for a two dimensional parameter space, where λmax (λmin) is the maximum
(minimum) eigenvalue of MSEθ̂ .

ΦE∗(MSEθ̂ ) =
λmax(MSEθ̂ )

λmin(MSEθ̂ )
(12)

After a successful OED, based on ΦE∗(MSEθ̂ ), the contour plot of the cost function of parameter identification
Eq.(3) visualised over a two parameter space should be as circular as possible, i.e., there is no correlation between
both parameters.
Usually, the dimension of the parameter vector θ is much larger than two and not every parameter has the same
impact on the predictive power of the model. In this context, predictive power means, that a model is able to
describe the dynamics of a system appropriately even under conditions that were not part of a former parameter
identification. As only a few linear combinations of unknown parameters can dominate the qualitative behaviour
of a model [8, 9], a parameter sensitivity analysis could be used to group them into an important and unimportant
set, i.e., parameters that have to be estimated as precisely as possible and parameters that are assumed to be known
and fixed, respectively. Even for this task, the Sigma Point method provides an elegant way to define a scalar
measure of MSEθ̂ with an inherent parameter sensitivity approach. After the determination of parameter statistics
by the mean square error matrix, the general concept of the Sigma Point method is used to transfer parameter
uncertainties to the system states x(t). Adjusted to this requirement, ξ represents all estimated parameters θ̂ , g(·)
stands for the solver of the o.d.e. system Eq.(1), and η tk is the resulting vector of the system states at the time point
tk. On the analogy of Eq.(11), a mean square error matrix of the system states is defined:

MSEx ≈ ∑
tk

MSEx(tk) =∑
tk

Ĉx(tk) + b̂ix(tk) · b̂i
T
x(tk). (13)

Now the trace of MSEx can be minimised by searching suitable system stimuli. Parameters that have a strong
impact on the predictive power of a model, i.e., parameters leading to large entries of MSEx, are automatically
selected and their uncertainties are reduced.

2.5 Model Selection

In the previous sections we assumed that the model structure, i.e., the interaction of model components, is known
and that a disagreement of simulation results and measurement data is caused by imprecise model parameters. In
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practise, this is a quite idealised assumption. Usually, at the beginning of model development, the underlying basic
processes of the considered system are only vaguely known. Consequently, different model hypothesis can exist,
that are able to describe the related system under given conditions equally well.
The task of OED is to find conditions, i.e., system stimuli, that make competing model candidates distinguishable.
This field of OED is known as model selection or model discrimination [10]. The general problem is to find a
suitable measure of model differences, that can be used as a cost function for OED. Several approaches already
exist, where some of them are motivated by the use of Bayesian methods [11], other one are related to the informa-
tion theory [12], and finally some are purely deterministic,i.e., goodness-of-fit test. Nevertheless, it seems fruitful
for the authors, to combine statistics and deterministic ideas. By the definition of the mean square error matrix of
the system states (Eq.(13)) we have already introduced statistics to a deterministic model. Now, a system state is
characterised by a mean and confidence region. This additional information is used to define a cost function for
OED. The same system state at time point tk of different model candidates should possess distinguishable values,
whereby the related confidence regions of this state provide a measure how large this difference should be to get
meaningful results. In Fig. 1 one can see the probability distribution pr(·) of the same output function ŷi(tk) of two
competing model candidates (M1 and M2). Both distributions cover almost the identical range of the output space,
leading to a large overlap. Even with a proper measurement data, no model can be selected as the more suitable
one. Only after a reduction of the overlap (Fig.2), the second model M2 can be clearly identified as the appropriate
model by measurement data.

Overlap(M1,M2)

−2 −1 0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

ŷ(tk)

pr
(ŷ

(t
k)

)

Output of M1

Output of M2

Figure 1: Illustration of the Overlap of two model

output probability distribution functions, where

both functions cover almost the same output space.
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Output of M1

Output of M2

Measurement Data

Figure 2: Only a reduced Overlap enables a de-

cision which model candidate is more likely com-

pared to measurement data.

The overlap of the system states of competing model hypothesis is an ideal measure of model differences. Fur-
thermore, this approach takes the imperfection of parameter estimation in the filed of model selection explicitly
into account. A mathematical expression of the overlap was recently introduced in [13] to determine the overlap
of measurement data and model output. Adjusted to our requirements, the definition of the overlap for a system
state x j is given by:

O j =∑
tk

2 ·
√

C j j
xM1

(tk)
·C j j

xM2
(tk)

C j j
xM1

(tk)
+C j j

xM2
(tk)

exp

⎡⎣−0.5 · (E[x j
M1

(tk)]−E[x j
M2

(tk)])2

C j j
xM1

(tk)
+C j j

xM2
(tk)

⎤⎦ , (14)

where C j j
(·) the j’th diagonal element of the related (co)variance matrix and E[(·) j] the j’th element of the expectation

vector. To incorporate overlap regions of different system states the sum of Eq.(14) is used:

O∑ = ∑
j

O j. (15)

As already mentioned, all needed information to calculate the overlap (Eq.(14)) is given by the Sigma Point ap-
proach. Uncertainties about estimated parameters, that were determined in advance by the Sigma Points, are
transformed to the system states. The resulting statistics of the states is used to make competing model hypothesis
more distinguishable. Furthermore, if no measurement data can be explained by the confidence regions of the
system states, the model structure has to be corrected, as it remains the only source of disagreement.
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3 Application example
The application example of the Sigma Point method in the field of Optimal Experimental Design is demonstrated
by a simple unstructured growth model of a cell population for a continuous stirred tank bio-reactor:

ċB = μ · cB −D · cB (16)

ċS = − 1

YB|S
·μ · cB +D · (cs,in − cs) (17)

μ = μmax · cS

cS +KS
, (18)

where cB is the concentration of biomass, cS the concentration of the substrate, D the dilution rate, and YB|S the
yield factor, that is considered as given by literature. The two model parameters, μmax (the maximum growth rate)
and KS (the substrate affinity constant) of the Monod kinetics (Eq.(18)), are assumed to be unknown and have to be
identified by an optimiser with the measurement information about the biomass concentration (corrupted by normal
distributed noise, i.e., v ∼ N(0,Cy)) at three time-points tk = [0.5 1.0 1.5]h. After a first estimation, the parameter
uncertainties are determined either from the Fisher information matrix or by the Sigma Point method. To judge
which of the two methods provides a more realistic approximation of the (co)variance matrix Cθ̂ , a Bootstrap
approach is used. More then 10,000 artificial measurement samples are necessary until the Bootstrap approach
tends to stabilise, i.e., the mean and the (co)variances do not change when the sample number is increased further.
In contrast, the Sigma Point method needs only 7 measurement samples (2 · f + 1) and produces nearly the same
results for different measurement uncertainties (Fig.3). This indicates that the Sigma Point method works very
well and is highly effective in this case. The classical FIM approach underestimates the parameter uncertainties
strongly, especially the variance of KS. As the cost function of OED depends on the (co)variance matrix, the
quality of the approximation of Cθ̂ directly affects the newly designed experiment. Consequently, the SP-designed
experiment (only the inlet flow is assumed as the design variable) generates a tighter and more roundish cost
function (sum of squared errors) for the parameter estimation process (Fig.4), that is equivalent to a reduction of
parameter uncertainties and of the correlation between this two parameters.
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experiment

After a successful determination of parameter uncertainties by the Sigma Point method, the same approach is used
to transform parameter statistics to the system states. Instead of single values the states are described by a mean E[x]
and a related (co)variance matrix Cx. This information is sufficient to determine the introduced novel cost function
Eq.(13). In Tab. 1 related values of Eq.(13) are given for the unoptimised, the FIM-optimised and the Sigma Point-

Unoptimised FIM-optimised SP-optimised
trace(MSEx)

[trace(MSEx)]SP−opt.
109.51 4.09 1

Table 1: Normalised values of the introduced cost function (Eq.(13)) for the unoptimised, FIM-optimised, and SP-

optimised experiment.

optimised experiment. Obviously, the Sigma Point-optimised experiment possesses the smallest entry, i.e., tight
confidence regions of the system states due to an improved estimation process by OED. In [14] a demonstration
of OED can be found, where the search of an optimal system stimuli is directly based on Eq.(13) for a complex
biological two substrate model. In a second step, the statistical information is used in the framework of model
selection. In the simplest case, the goodness-of-fit approach is used to select between competing models or to find
optimal stimuli of the system which increase the distinguishability of different model hypotheses. Nevertheless,
some competing models possess quite similar goodness-of-fit values, that are based on the difference between
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simulation results and measurement data. In this context, the usage of the state confidence regions can be helpful to
select between these models. To get two model candidates (M1 and M2) the Monod kinetics (Eq.19) is modified by a
substrate inhibition (Eq.20). For the case of simplicity a batch process is assumed (D=0) and artificial measurement

μM1
= μmax · cS

cS+KS
(19) ; μM2

= μmax · cS

cS+KS+
c2
S

KI

(20)

data of biomass concentration are generated by the original Monod model corrupted by measurement noise (v ∼
N(0,0.1)). Under unsuitable initial conditions, i.e., low initial concentration of biomass and substrate, the two
models describe a similar dynamic behaviour and show almost equal state confidence regions (Fig.5), that are
caused by parameter uncertainties. No advice can be given which of them is more suitable to describe the underling
process. Considering the overlap approach [13], the discrimination function is used Eq.(15), that is based on mean
and (co)variances of the states O(E[xM1

],CxM1
,E[xM2

],CxM2
). The objective of OED is to find initial conditions

which reduce the overlap of the states confidence regions as well as in any way possible. As one could expect, an
increased initial substrate concentration reduces the overlap dramatically, as the influence of the substrate inhibition
becomes more and more important. Now, under optimised initial conditions the measurement data clearly prefer
the Monod model (M1), which is the correct one (Fig.6).
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Figure 5: Unsuitable initial conditions for model selection lead to confidence regions of both model candidates M1 and

M2 that cover nearly the same state space, i.e., large overlap.
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Figure 6: By minimising the overlap, the two model candidates M1 and M2 become distinguishable related to measure-

ment data.

4 Conclusions
In this paper, the potential of the Sigma Point method related to the field of Optimal Experimental Design is demon-
strated. For the application example of a biological substrate uptake model, the Sigma Points are used to determine
more reliable results of parameter uncertainties with a manegable computational effort. That reliable parameter

2394

I. Troch, F. Breitenecker, eds.      ISBN 978-3-901608-35-3



uncertainties are the precondition to find an optimal system stimuli is shown by the modified E∗-criterion. Only
the parameter statistics, that are determined by the Sigma Point method, are able to influence the cost function for
parameter identification optimally.
Furthermore, the general concept of this approach enables the determination of some statistics of the system states,
that are caused by parameter uncertainties. The benefit of this additional information is at least twofold: (1) a
definition of a cost function for OED with an inherent parameter sensitivity measure is possible and (2) the over-
lap approach can be used to select between competing model hypotheses. Consequently, elementary steps in the
framework of OED can be improved by the Sigma Points.
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