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Abstract. Block based modeling of physical systems with distributed parameters requires to specify
the interconnection of component blocks by the boundary conditions of partial differential equations.
This contribution shows how to build a model of a distributed parameter system that can be connected
to similar blocks in a variable way. The description is based on a behavioral model without predefined
inputs and outputs. The specific boundary conditions which are imposed by a connection to other sys-
tems are realized by appropriate interconnection structures without changing the distributed parameter
model.

1 Introduction
Practical simulation programs for complex systems usually consist of a library of component blocks and of a soft-
ware environment for the construction of system models from these components. This software environment may
be a simulation language or – more comfortable – a graphical user interface for the arrangement and connection of
various components. The construction of component blocks requires considerable expertise in science, engineer-
ing, and mathematics. This knowledge is "canned" in a component block and is at the service of the user who can
rely on the correct implementation whithout knowing about its inner life. Thus the task of simulation of complex
systems is separated between two groups of experts, here called the block designers who build all the component
blocks in the library and the model builders who select and connect the appropriate components to form a complex
system.

This approach has been successfully applied mostly for component blocks with clearly defined inputs and outputs
and for systems described by "pipe models" of different kinds (hydraulic, electric, logistic, etc.). The situation is
different when the single components are described by differential equations for potential and flow variables. Since
there are no predefined inputs and outputs, the connections between different components are defined in terms of
port variables for e.g. voltage and current or pressure and flow. For distributed parameter systems described by
partial differential equations defined on a finite domain, the connection to other system components is given by
boundary conditions.

Here arises a fundamental problem for the construction of flexible simulation environments: Mathematical rigor
requires that the description of a distributed parameter system is given by a properly posed problem, i.e. that the
boundary conditions are specified. However in a simulation environment the block designer has to implement a nu-
merical model for unspecified boundary conditions. These are given later by the model builder through connection
to other blocks.

Possible solutions to this problem have been discussed lately in specific applications fields like acoustic simula-
tion [1, 2, 3] and virtual musical instruments [4, 5, 6, 7]. More formal approaches from the perspective of control
theory are port-Hamiltonian systems [8] and the behavioral approach [9]. The interconnection of transmission
lines and electrical circuits has also been a topic of classical circuit theory, where descriptions by impedances,
admittances, etc. for voltage and flow representations or by scattering matrices for wave variable representations
have been introduced [10, 11]. The wave variable representation has been carried to the discrete-time domain by
the wave digital principle [12].

It seems that the relations between these different theoretical approaches and other practical solutions for special
cases have not yet been fully explored. This contribution presents a small step in this direction by linking the gen-
eral idea of the behavioral approach to some well-known tools from circuit theory and digital signal processing.
The following section introduces the idea of block based physical modeling. It shows the connection between the
behavior of a distributed parameter system and possible input output assignments induced by the boundary condi-
tions. Furthermore the relations to the well known two-port parameters from circuit theory are shown. Section 3
presents the implications between block design and model building, i.e. the design of a component block for later
use in a larger model. It is shown that a block for a distributed parameter system can be designed according to stan-
dard boundary conditions and that the boundary conditions can be modified subsequently without opening up the
component block. This method is extended to include not only effort and flow variables but also wave variables. It
is explained how component blocks designed for effort and flow variables can be connected to those designed with
wave variables. Finally Section 4 shows how to obtain a multiport description from the formulation of a distributed
parameter system as a boundary value problem.
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2 Block based physical modeling
2.1 Transfer Function Model

As an example for a physical system consider a spatially 1D object (a pipe, a transmission line, a string, etc.) with
a pair of port variables at each end (Fig. 1 left). The variables Qnm are pairs of effort/flow quantities (across and
through variables, intensive and extensive quantities), i.e. deflection/force, pressure/velocity, voltage/current etc.
A physical analysis involves typically the determination of two of these quantities (the outputs) in dependence on
the other two (the inputs). The selection of the inputs and outputs is not unique and depends on the problem. If
the quantities Q11 and Q12 are arbitrarily chosen as inputs and Q21 and Q22 as outputs then description by Laplace
transfer functions H(s) (for linear systems) takes the form

Q21(s) = H11(s)Q11(s)+H12(s)Q12(s),
Q22(s) = H21(s)Q11(s)+H22(s)Q12(s).

(1)

To avoid this arbitrary assignment of inputs and outputs, an implicit formulation may be chosen as (Fig. 1 right)

MQ = 0, with M =

[
H11 H12 −1 0
H21 H22 0 −1

]
, Q = [Q11(s) Q12(s) Q21(s) Q22(s)]

T (2)

Q11

Q21

Q12

Q22

Q11

Q12

Q21

Q22

Figure 1: Two-port description (left) and implicit multi-port representation (right). Each pair of variables Q1m and Q2m
is a pair of effort/flow quantities at port m for m = 1,2. The nature of each variable (effort or flow) and the role as input
or output is not specified at this point.

In (2) the elements of the vector Q represent the physical variables that are connected to the outside world. They
are neither inputs nor outputs. The set of all possible values for Q is restricted by M to the set of values that the
system admits (behavior in the sense of [9]).

For spatially distributed systems in arbitrary domains D, the matrix M is typically derived from a partial differential
equation of the general form

L{q(x, t)}+
∂
∂ t

q(x, t) = 0 x ∈ D . (3)

L is a matrix operator consisting of constants and spatial derivatives and q(x, t) is a vector of physical variables.
For simplicity it is assumed that no physical variables have been eliminated in the process of the physical analysis,
such that the highest oder of the spatial derivatives in L is one.

For linear systems the analysis is simplified by considering the one-sided Laplace transforms Q(x,s) of the vari-
ables q(x, t). The initial conditions are assumed to be zero, since the connection of modeling blocks is ony deter-
mined by the boundary conditions.

The example shown in (1) describes a system with two ports each with two port variables. However, the matrix
notation

MQ = 0 (4)

represents also the general case of m ports with two port variables each. Then the vector Q of port variables
has length 2m and the matrix M is of the size m× 2m. Further generalizations to ports with more than two port
variables are possible, e.g. for the three-phase transmission of electrical power.

2.2 Input-Output Assignment

A computable model requires to obtain output data from input data. Therefore, the algorithmic design of the
component blocks starts with assigning input and output signals to the physical variables in Q. The concept of a
well-defined n-port from classical circuit theory [10] requires that the variables for each port are equally divided
into inputs and outputs. As a trivial consequence, a port with two variables has one input and one output.

Thus for a system according to (4) there are m input variables V (x,s) and m output variables Y (x,s), where V (x,s)
and Y (x,s) are vectors of length m. They are defined on the boundary ∂D of the domain D for the distributed
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parameter system from (3). For spatially one-dimensional systems, D is an interval on the spatial axis and ∂D are
its two end points.

The assignment of V (x,s) and Y (x,s) to Q(x,s) is defined by certain linear combinations of the elements of Q(x,s)
as inputs and other linear combinations as outputs. These linear combinations are given by two matrices of size
m×2m, the boundary matrix fb and the output matrix fo (see Fig. 2 left)

fT
b Q(x,s) = V(x,s), x ∈ ∂D, (5)

fT
o Q(x,s) = Y(x,s), x ∈ ∂D. (6)

Although these equations look very similar, there is a fundamental difference between fb and fo: The output matrix
fo simply computes the output Y from Q once Q is available. This is not the case for the boundary matrix fb,
since V is an input and needs not to be computed. Instead fb describes the boundary conditions which restrict the
behaviour Q to those values that satisfy (5). The fullfillment of the boundary conditions is part of the numerical
method for solving the partial differential equation (3).

The simplest choice for fb and fo is the selection of a subset of the port variables Q as inputs and the remainder as
outputs (see Fig. 2 right). The corresponding boundary and output operators are in the standard form

fb =

[
I
0

]
, fo =

[
0
I

]
, (7)

where I and 0 are identity and zero matrices of size m×m.

Fig. 2 (left) shows general boundary and output operators for the two-port representation of Fig. 1. In Fig. 2 (right)
the boundary and output operators have the standard form according to (7).

Q11

Q12

Q21

Q22

V1

V2

Y1

Y2

M

fT
b

fT
o

Q11

Q12

Q21

Q22

V1

V2

Y1

Y2

M

Figure 2: General form of the boundary and output operators (left) and standard form from (7) (right).

2.3 Two-Port Parameters

For electrical systems of with two ports, the matrix M describing its behaviour is closely related to the two-port
parameters from classical network theory [10, 11]. As an example, chose the following assignment of voltage Un
(effort) and current Jn (flow) variables

Q11 = J1,

Q21 = U1,

Q12 = J2,

Q22 = U2,
U =

[
U1

U2

]
, J =

[
J1

J2

]
. (8)

Partitioning M accordingly yields from (2)

MQ =
[
MJ −MU

][
J
U

]
= 0, (9)

where the matrices MU and MJ correspond to U and J, respectively.

Left multiplication with the inverse matrix M−1
U gives

[Z − I]

[
J
U

]
= 0, or U = ZJ with Z = M−1

U MJ (10)

with the unit matrix I. According to the physical dimensions of the vector of voltages U and the vector of currents
J, the matrix Z turns out to be a matrix of impedances. Note that (10) holds also for multiport systems with
appropriate definition of the vectors U and J.

The exemplary assignment of two kinds of quantities (voltage or currents) to four different variables according
to (8) is only one of six possibilites. In total they result in a description by impedance (as above), admittance,
transmission, and hybrid parameters and the inverses of the latter two [10, 11].
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3 Block design and model building
This section shows how the framework presented above allows to separate the tasks of the block designer and the
model builder. Designing a component block according to some partial differential equation (3) requires to adopt
a specific set of boundary and output matrices such that the component block is well defined. However, the model
builders who use this component might have different requirements for the boundary conditions.

The first subsection presents a method to modify the boundary conditions for which a component block is designed.
The following subsections extend this method from effort and flow variables to wave variables.

3.1 Modification of the boundary conditions

This conflict can be solved when the component block is designed according to Fig. 2. The shaded area in Fig. 3
represents the input-output description from Fig. 2 either in general or in standard form (7). This component block
is accessible to the model builder only via the vectors of input and output signals V and Y. Now assume that the
model builder wants to realize a different set of input and output signals V1 and Y1 described by

fT
b1Q(x,s) = V1(x,s), x ∈ ∂V, (11)

fT
o1Q(x,s) = Y1(x,s), x ∈ ∂V. (12)

For easier notation, define the matrices of size 2m×2m

F =

[
fT
b

fT
o

]
and F1 =

[
fT
b1

fT
o1

]
, (13)

such that the input-output assignments (5,6) and (11,12) can be written as

FQ(x,s) =

[
V
Y

]
and F1 Q(x,s) =

[
V1

Y1

]
. (14)

Then the inputs and outputs V and Y of the component block can be accessed through the input and output signals
V1 and Y1 required by the model builder via a connection block described by the matrices F and F1

F1F−1

[
V
Y

]
=

[
V1

Y1

]
. (15)

The connection block defined by F1F−1 exists if the component block is designed such that matrix F is invertible.
This condition is guaranteed by the standard form (7) which turns F into a 2m×2m identity matrix. Then the input
and output signals V and Y can be directly expressed by Q such that the new boundary conditions (11,12) apply
directly to the accessible port signals V and Y (see Fig. 2, right)

Q =

[
V
Y

]
,

[
fT
b1

fT
o1

][
V
Y

]
=

[
V1

Y1

]
. (16)

As shown in Fig. 3 the desired boundary conditions can be realized without changing the existing component block
(shaded area).

V V1

Y Y1

M

fT
b

fT
o

fT
b1

fT
o1

Figure 3: Realization of arbitrary boundary conditions based on a given component block defined by fb and fo (shaded
area) and a connection block defined by fb1 and fo1 (not shaded).

3.2 Changing the Port Impedances

As an example consider a component block where the port variables are linked by a certain impedance (admittance,
etc.), as shown in Sec. 2.3 for a simple two-port. Here the situation is more general, since more than two ports
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are permitted (m ≥ 2) and the input and output signals are not restricted to a certain assignment of effort and flow
variables.

With reference to Fig. 3, a component block is given by the relation[
Z −I

][
V
Y

]
= 0 (17)

When V and Y represent flow and effort quantities, respectively, then Z is an impedance matrix. For other assign-
ments of V and Y, Z is an admittance, transmission, etc. matrix. Since all these matrix representations can be
converted to each other, Z is called here an impedance matrix without special assignments of V and Y. Further,
assume that the assignment of inputs and outputs to the physical variables in the component block follows the
standard form (7), i.e. F according to (14) is an identity matrix.

Now this component block with the fixed impedance Z shall be used in a larger model in lieu of component with
the requested impedance Z1. Therefore a connection block is required which converts the impedance Z on the side
of the given component block to the requested impedance Z1 on the other side (see Fig. 3). Such a connection
block can be designed according to Sec. 3.1.

The boundary matrix fb1 and the output matrix fo1 are chosen such that the matrix F1 takes the form

F1 =

[
fT
b1

fT
o1

]
=

[
I G
R I

]
. (18)

The physical dimensions of the matrix elements in R and G have to cancel in such a way that the matrix products
RG and GR have the dimension unity.

The inverse of the matrix F1 follows from the block matrix inversion lemma as

F−1
1 =

[
I −G

−R I

][
(I−GR)−1 0

0 (I−RG)−1

]
. (19)

Then [
V
Y

]
= F−1

1

[
V1
Y1

]
(20)

can be substituted into (17) to obtain [
Z −I

]
F−1

1

[
V1
Y1

]
= 0 . (21)

Performing all the matrix multiplications in (19) and (21) results in[
Z1 −I

][
V1
Y1

]
= 0 with Z1 = (I−RG)(ZG+ I)−1(Z+R)(I−GR)−1 . (22)

Z1 is the impedance matrix corresponding to the input and output variables V1 and Y1. It depends on the impedance
Z corresponding to the component block and on the matrices R and G defining the connection block. By proper
choice of R and G, the fixed impedance Z can be turned into the desired impedance Z1.

For a single port with scalar input and output V and Y , these relations take an especially simple form shown in
Fig. 4. The given component block exhibits a fixed impedance Z at the port (V ,Y ). To change its impedance to a
desired value Z1 at the port (V1,Y1), the boundary and output matrices are

fb1 =

[
1
G

]
, fo1 =

[
R
1

]
, F1 =

[
1 G
R 1

]
. (23)

resulting in the relations [
1 G
R 1

][
V
Y

]
=

[
V1
Y1

]
or V = V1 −GY ,

Y1 = RV +Y .
(24)

Thus the connection block is realized by the lattice structure in shown in Fig. 4.

Finally, the relation between the impedances takes the form

Z1 =
Z +R

ZG+1
, (25)

where a wide range of desired values for Z1 can be obtained by adjusting R and G properly.
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V
V1

Y
Y1

G
R

Figure 4: A simple example for changing the port impedances at the ports (V ,Y ) and (V1,Y1).

3.3 Conversion Between a Pair of Effort and Flow Variables and a Pair of Wave Variables

Apart from the representation of physical quantities by effort and flow variables, also the representation by incident
and reflected (ingoing and outgoing) waves is frequently used. Well-known discrete-time representations are wave
digital filters [12, 13, 6] and digital waveguides in one and more spatial dimensions [14, 15, 3, 4, 5].

Wave variables A and B are a superposition of effort and flow variables Y and V at a port with port resistance R.
This superposition can also be expressed by a matrix F2 similar to (18)

A = Y+RV ,
B = Y−RV ,

[
A
B

]
=

[
R I

−R I

][
V
Y

]
, F2 =

[
R I

−R I

]
(26)

When Y and V represent electrical voltage and current (or other pairs of effort and flow variables), then (26)
defines so-called voltage waves. For other assignments of the physical quantities, also current waves and power
waves have been defined [12]

This matrix notation in (26) is not only a concise notation for the wave variables. It describes also how to connect
a component block with effort and flow variables to other blocks with wave variables as inputs and outputs. The
corresponding connection block follows from rearranging (26) such that the input signals V and B on either side
are expressed in terms of the output signals Y and A

V = R−1 (A−Y) ,
B = Y−RV ,

(27)

Fig. 5 shows one port of a given component block with scalar effort and flow variables Y and V (shaded area). It
is connected to another port with wave variables A and B. The connection block is realized in the lattice structure
corresponding to (27).

V
A

Y
B

R−1

Figure 5: Conversion between a pair of effort and flow variables (V ,Y ) and a pair of wave variables (A,B).

The connection block from Fig. 5 follows directly from (27) by requiring the component block to interface with
wave variables. Thus the formalism with the boundary and output matrix introduced in Sec. 3.1 works not only for
effort and flow variables but equally well also for wave variables.

The structure of the connection block had been derived in a different way under the name KW-converter type I
in [16]. KW stands for Kirchhoff and wave variables, where Kirchoff variables are another name for effort and
flow variables.

3.4 Connection of Two Ports with Wave Variables and Different Port Resistances.

The connection of two wave ports with different port resistances requires so-called adaptors to ensure the continuity
of efforts and flows also in the wave representation [12, 15]. The framework introduced above allows also to derive
the adaptor equations directly from the boundary and output matrices for the definition of the wave variables.

The idea for connecting to different wave ports uses two KW-converters from Sec. 3.3. Instead of connecting one
converter according to Fig. 5 to an existing component block, two converters with different port resistances are
connected back-to-back. The wave variables at both ends are denoted by Al and Bl for l = 1,2 and the respective
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port restistances are Rl . The corresponding wave definitions are similar to (26)[
Al
Bl

]
=

[
Rl I

−Rl I

][
Vl
Yl

]
, Wl =

[
Rl I

−Rl I

]
for l = 1,2 (28)

Now the effort and flow variables Vl and Yl are eliminated from (28). The back-to-back connection forces the
efforts to be equal and the flows to add up to zero. For electrical circuits, these relations are known as the Kirchhoff
laws. They can be expressed in matrix form as[

V1
Y1

]
= P

[
V2
Y2

]
with P =

[
−I 0

0 I

]
(29)

The elimination of V1, Y1 and V2, Y2 from (28) and (29) results in[
A1
B1

]
= W0

[
A2
B2

]
, where W0 = W1PW−1

2 =
1
2

[
I−R0 I+R0
I+R0 I−R0

]
with R0 = R1R−1

2 .

(30)

This relation between the waves A1, B1 and A2, B2 can be rearranged in various ways, yielding different classical
adaptor structures [12].

Adding and subtracting the two rows in (30) recovers the relations between the efforts Y1 and Y2 (equality) and
the flows V1 and V2 (add up to zero). In [8, Sec. 4.2] these relations have been interpreted as power balance and
loss balance, respectively.

4 Formulation of the Boundary Conditions
So far the boundary conditions for the input-output assignment according to (5,6) have been assumed to be known.
This section shows how to obtain the boundary conditions and the physical variables Q(x,s) at the boundary ∂D
from the governing partial differential equation. A fairly general case is considered first and then the acoustic wave
equation is used as an example.

4.1 General Distributed Parameter Systems

Consider a partial differential equation for the time variable t and the vector of space variables x = [x1 x2 x3]
T . It

is defined on a spatial domain x ∈ D. The dependent variables form the vector of physical quantities q(x, t). It
contains a sufficient number of variables such that the partial differential equation contains only first order time
and spcae derivatives. The derivatives are combined by coefficient matrices B0 . . .B3. The physical nature of this
equation is determined by the kind of variables in q(x, t) and the matrix entries in B0 . . .B3. With this notation the
partial differential equation is of the general form[

B0
∂
∂ t

+B1
∂

∂x1
+B2

∂
∂x2

+B3
∂

∂x3

]
q(x, t) = 0 , L = B1

∂
∂x1

+B2
∂

∂x2
+B3

∂
∂x3

. (31)

where the operator of spatial derivatives is denoted by L.

Now define the normal component of the spatial differential operator as [17]

Ln = n1B1 +n2B2 +n3B3 , n = [n1 n2 n3]
T (32)

with n is the normal vector on the boundary ∂D. The normal component of the solution on the boundary is then
given by

qn(x, t) = Lnq(x, t) . (33)

The boundary conditions are now specified by selecting suitable components from qn or linear combinations
thereof through

fT
b qn(x, t) = v(x, t) x ∈ ∂D . (34)

The excitation function v(x, t) determines the values of qn(x, t) on the boundary and acts as an input signal.

The output values y(x, t) at the boundary are given in the same way as

fT
o qn(x, t) = y(x, t) x ∈ ∂D . (35)

The vectors fb and fo must not be collinear.
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4.2 Acoustic Wave Equation

The acoustic wave equation on a two-dimensional spatial domain is selected as an example. The physical variables
are the the sound pressure p(x, t) and the particle velocity v(x, t) = [v1(x, t) v2(x, t)]T with its components in x1
and x2 direction. The density of the propagation medium is denoted by ρ and c is the propagation speed (speed of
sound). The relations between sound pressure (effort) and particle velocity (flow) are governed by the equation of
continuity and the equation of motion

−
∂
∂ t

p(x, t) = ρc2∇v(x, t) ,

−∇p(x, t) = ρ
∂
∂ t

v(x, t) ,

(36)

with the nabla operator ∇. It would be possible to eliminate either the particle velocity or the sound pressure from
these two equations to obtain one second order partial differential equation. However, no elimination is performed
here to retain the general form of (31). Instead a vector-matrix notation is chosen which represents (36) in the
general form of (31). Such a representation is not unique. One possible form is obtained with the following vector
of three scalar physical variables and the corresponding coefficient matrices

q =

⎡⎣ v1(x, t)
v2(x, t)

− 1
ρ p(x, t)

⎤⎦ , B0 = −

⎡⎣ 0 0 c−2

1 0 0
0 1 0

⎤⎦ , B1 =

⎡⎣ 1 0 0
0 0 1
0 0 0

⎤⎦ , B2 =

⎡⎣ 0 1 0
0 0 0
0 0 1

⎤⎦ . (37)

To evaluate the normal components of the differential operator L on the boundary, a rectangular region with [0, l1]×
[0, l2] is chosen as spatial domain D (see Fig. 6). On each side of the rectangle, the normal vector n from (32) points
either in the direction of ±x1 or ±x2, such that Ln is either

Ln = ±B1 or Ln = ±B2. (38)

The corresponding normal component of the solution is then e.g

qn(x, t) =

⎡⎣ v1(x, t)
−p(x, t)/ρ

0

⎤⎦ for x =

[
l1
x2

]
(right vertical boundary) or (39)

qn(x, t) =

⎡⎣ v2(x, t)
0

−p(x, t)/ρ

⎤⎦ for x =

[
x1
l2

]
. (upper horizontal boundary) (40)

The input-output assignment is now shown for the right vertical boundary (39). The appearance of a zero in the
vector qn reflects the reduction by one dimension when restricting the area D to its boundary ∂D. The rectangular
shape of D and the alignment with the axes makes this fact explicit here. Therefore qn may also be represented by
a vector q̃n with two non-zero elements, omitting the zero at the bottom of qn. Then the conditions

fT
b q̃n(x, t) = v(x2, t), fT

o q̃n(x, t) = y(x2, t) (41)

define the input and output signals. E.g. the choice

fb =

[
0
1

]
fo =

[
1
0

]
(42)

sets the sound pressure on the boundary equal to the input signal v(x2, t) and selects the component v1 of the
particle velocity as output signal.

In computer implementations of distributed parameter systems it is desirable to prescribe boundary values not on
a spatially continuous boundary (e.g. v(x2, t) for 0 ≥ x2 ≥ l2) but on a discrete set of points along the boundary.
A possible selection of points has been marked in Fig. 6. The input and output values from (41) are then no
more parametrized by the spatially continuous x2 variable, but by an discrete index (say m) of spatial locations.
The input and output values at location m constitute a simple port with two port variables. The input and output
definition (41) for all spatial samples turns in the description by multiple ports with two port variables each. This
is the description that as been adopted in Sec. 2.2. By this example it has been shown how to turn a boundary value
problem of a distributed parameter system into a multiport description.

5 Conclusion
In conclusion, it has been shown that the boundary conditions and output definitions of an existing component block
of a spatially distributed system can be adapted without changing the interior of the component block. A block
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x2

x1
l1

l2

D

∂D

Figure 6: Rectangular region as spatial domain for the acoustic wave equation. The spatial sampling points at the
boundary ∂D are denoted by black dots (•).

designer can implement in an early development state pre-defined model descriptions in terms of partial diferential
equations, which are well-posed via standard sets of boundary conditions. The model builder on the other hand
is free to adjust the boundary conditions and model connections in a later stage of the model development using
this pre-defined component block models. This feature is very useful in hierarchically structured design processes
of advanced simulation environments. A further benefit is the possiblity to pre-optimize the realization of the
component block model.

The block design process proposed in this paper is given in a quite general and fundamental form with several links
to well known literature in physical modeling techniques. Nonetheless, there are several practical applications of
this design process.
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