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Abstract. The large amount of computation necessary for obtaining time optimal solution for 

moving a manipulator on specified path has made it impossible to introduce an on line time opti-

mal control algorithm. Most of this computational burden is due to calculation of switching points. 

In this paper a learning algorithm is proposed for finding the switching points. The method, which 

can be used for both serial and parallel manipulators, is based on a two-switch algorithm with 

three segments of moving with maximum acceleration, constant velocity and maximum decelera-

tion along the path. The learning algorithm is aimed at decreasing the length of constant velocity 

segment in each step of learning process. The algorithm is applied to find the near minimum time 

solution of a parallel manipulator along a specified path. The results prove versatility of the algo-

rithm both in tracking accuracy and short training process.

1 Introduction

Time optimal solution has always been an interesting subject among researches working on path planning and 

control of manipulators.

Figure 1. schematic diagram of the manipulator

The minimum time problem of tracking specified path by a serial manipulator was extensively studied by many 

researchers. Bobrow et al. [1] proposed a method for time optimal motion of serial manipulators based on phase 

plane analysis. Considering that the solution is bang-bang, the method reduces the problem into calculating the 

maximum and minimum acceleration along the trajectory in each step, and to find the switching points. They 

used a geometric approach in the phase plane and suggested a shooting method for finding switching points, in 

which one has to find a solution trajectory which comes in contact with the boundary of non-feasible region

without crossing it this, numerically, is a very difficult and expensive task to do.

Their method was further developed by Pfeiffer and Johanni [2]. Taking advantage of characteristics of the 

boundary of Non-Feasible Region (NFR), they presented a method for direct calculation of this boundary and 

finding the switching points on it for serial manipulators. They stated that switching points might occur on the 

boundary of NFR at critical points, where the slope of non-feasible region boundary minus the value of ss &&&

changes signs. This advancement considerably reduced the numerical effort.

Zlajpah [3] introduced the concept of trapped area from which no solution trajectory can escape without leaving 

the prescribed trajectory, and locked area to which no solution trajectory can enter from within feasible area. 

Sadigh and Hassan Ghasemi [4] showed that the lower boundary of these trapped and locked areas constructs the 
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switching curve. The switching curve is a solution trajectory itself, and could be generated by direct integration 

of equations of motion, provided that either the first switch or one of the critical points on it are known. 

The problem of minimum time motion along specified path for cooperative multi manipulators (CMMS) was 

also studied by several researchers. Moon and Ahmad [5] employed a similar algorithm as Bobrow et al. to find 

the time-optimal trajectory for a cooperative robot. They showed that to find the maximum and minimum values 

of acceleration at each point, one should solve a linear programming problem, McCarthy and Bobrow [6] studied 

the number of saturated actuator of a CMMS during minimum time motion along a specified path. Taking ad-

vantage of this result, 

Sadigh and Hasan Ghasemi [4] proposed a direct method for calculation of maximum and minimum acceleration

for CMMS.

Hasan Ghasemi and Sadigh [7] extended the work by Pfeiffer and Johanni to propose a direct method for compu-

tation of critical points for parallel manipulators and presented an algorithm to construct the switching curve.

These advancements have made the situation for parallel manipulators similar to serial ones.

In spite of all above mentioned advancements in this area during last two decades, which made it possible to 

compute the maximum and minimum acceleration on line, switching points needs off line computation. This 

fact, which is due computation of critical points, and backward integration for first and last switching points, 

prevents this method to be used as a control algorithm. So far the method can only be used for time optimal path 

planning.

This paper takes advantage of the previous theoretical developments in this area and presents a learning algo-

rithm to find switching points and near-minimum time solution online. As a result of that this method can be 

used as a feed forward time-optimal control law. The method can be used both for serial and parallel manipula-

tors. Basic idea behind the method is to move the manipulator on the specified path on consequent segments of 

maximum acceleration, constant velocity, and maximum deceleration and to learn the manipulator to reduce and 

adjust the constant velocity period in each step of learning process. As the constant velocity period gets smaller 

and smaller, the solution converges the time optimal and two switches on the start and final time of constant 

velocity period converge the real switch. Adjustment of second switch also pushes the final error to zero.

2 Time optimal problem

Consider a manipulator, which is supposed to move a payload from an initial point to a final point on a specified 

path in a minimum time subject to actuator's saturation limit. Motion of the payload in task space is defined by r
coordinates; ],...,[ 1 rXX=X  and the motion of the system is defined with n variables; i.e. T

rqq ],...,[ 1=q .

The equations of motion of such system can be written as

111 )(),()( ××××× =+ mmnnnnn τqBqqhqqM &&& (1) 

In this equation, M, h, and τ  are, respectively, the generalized mass matrix, coriolis and centrifugal terms, and 

the actuator forces.

The path in task space, X, can be stated as
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Where q , p and J, respectively denote the array of joint coordinates, direct kinematic relation of the manipulator 

and its Jacobian. On the other hand, the path can be expressed in terms of the non dimensional arc length vari-

able, s , as
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In above equations, f shows the relation of the path in task space with non dimensional arc length parameter, s, 

also, (.)' denotes derivative with respect to s . Substituting for X , X&  and X&&  from equations (3) into equations

(2) and solving for q , q&  and q&&  one gets:

))((1 sfpq −= (4) 
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ss &&& )(11 fJXJq ′== −− (5) 

ssssss &&&&&&&&&&& )())()(( 1121111 fJJJffJXJJJXJq ′−′′+′=−= −−−−−− (6) 

Where 1−P  represent the inverse kinematics and J denotes the Jacobian matrix of manipulator. Substituting 

equations (4), (5) and (6) into equation (2), one can rewrite equations of motion as:

11
2

11
~

××××× =++ mmnnnn ss τBedc &&& (7) 

The above system of equations represent n equations with two states, [ ]ss &, . Any motion of the system, which 

moves the object on the prescribed path, must satisfy all above equations. Now, the optimization problem can be 

re-stated as:

Problem (1 ): Find the control inputs τ  to minimize ∫
f

0

t

t
dt  subject to 

mi
ssssss

iii ,...,1
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=++

τττ
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(8) 

It can be shown, see Bobrow et al. [1], that the solution to this problem is a bang-bang in s&& . To solve problem 

(1), one has to take the following steps:

1- Find the minimum and maximum acceleration at each step

2- Find the switching points and switch the acceleration at switching point

It can be shown that all switching points are located on a switching curve [7], which for a specified manipulator 

is only a function of the desired trajectory.

As stated in previous section there is no method for online calculation of switvhing points. In next section, we 

describe the proposed learning algorithm to find the switching points.

3 Single switch algorithm

We assume that the described path is such that minimum time motion can take place with a single switch. As 

explained in first section, in the first step of learning algorithm we start the motion from 0s  with maximum 

acceleration. The acceleration is then switched to zero at 1s , see Figure 2, and motion is continued with constant 

velocity until the end effector reaches point 2s  along the path. At this point acceleration is switched to its mini-

mum possible value and the motion is continued until the line 0=s&  is crossed. With this planned motion, one 

might expect s at final point to be different from desired one, fs . 

Figure 2. schematic diagram of first step in learning process

With this in mind, we must suggest a learning algorithm which can decrease the distance between 
is1  and 

is2

and to decrease the final error, f
i
e

i ss −=δ . The first action causes two approximate switching points 1s  and 

2s  to converge to the exact switch and second action causes the end effector to stop at the desired final point. To 

s

0s

s&

1s 2s ef ss
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make the algorithm clear we first propose separate algorithms for these two actions and then try to combine then 

and present the final algorithm.

3.1 Elimination of final error

To eliminate the final error, assuming that minimum acceleration trajectories are almost parallel we may change 

the switching point is2  to iis δ−2  at step i+1 which means 

iii ss δ−=+
2

1
2 (9) 

This correction continues until the final error becomes smaller than a reasonable value, β . Figure 3 shows the 

algorithm of eliminating final error while 
is1  is kept constant.

Figure 3. schematic diagram of the process eliminating final errors

3.2 Finding the switching point

To find the switching point, we increase 1s , and decrease 2s  at each step until these, two converge to the single 

switch. To this end, at each step we change the switching points by a value of ε  as follow

iii
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The value of iε  can be considered as follow
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In which, α  is a constants which indicates how fast the switch points should approach each other in the early 

stages of the learning process; whereas, γ  shows a constant which shows how fast the switch points should 

approach each other at final stages of the learning process. The value of α  should always be smaller than 0.5

and a good typical value for that would be some thing between 0.1 to 0.2. Smaller values of α  means slower 

and safer approach to switch, while larger values of α  means faster approach to the switch but at the risk of 

crossing non-feasible region boundary; i.e. leaving the desired trajectory. In a similar way maximum value for γ
is one and a good typical value for γ  would be something between 0.75 to 0.9. Figure 4 shows schematic graph 

of this algorithm.
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2
3
22

2
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Figure 4. schematic diagram for algorithm of finding switching

3.3 Final Algorithm

At this stage, we may combine the above mentioned algorithms to obtain one which both approaches the ap-

proximate switches to the real one and to eliminate the final error. To this end, it is sufficient to make corrections 

to 
is2  based on both algorithms which means to calculate 1

2
+is  as follow

iiii ss δε −−= ++ 1
2

1
2 (12)

Where 
iδ  and iε  are as defined in equation (9) to (11). Figure 5 shows how the final combined algorithm 

works.

Figure 5. schematic diagram of results of  minimum time algorithm

4 Multi switch algorithm

In this section, we consider the case where solution trajectory in phase plane enters non-feasible region; i.e. end 

effector leaves the prescribed path. For instance, suppose that at sti 1+  iteration, solution trajectory enters NFR, 

as shown in Figure 6. In this case, in next learning iteration we simply try to perform the single switch algorithm 

once between points ( is1 , is& ) and ( 1cs , is& ), and then between points ( 1cs , is& ) and ( is2 , is& ), see Figure 6. If in 

the process of finding these switches, the solution trajectory again intersects the NFR, a second critical point 2cs
is introduced and similar algorithm of single switch is applied for that. To ensure escaping from crossing the 
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NFR again and again it is suggested that iε be reduced effectively. This means that in neighbourhood of a diffi-

cult portion of the path increase of velocity must be slowly.

Figure 6. schematic diagram of multi switch algorithm

5 Numerical example

Figure 7 shows the schematic of a system composed of two planar manipulators handling a payload. The physi-

cal characteristics of the system are indicated in Table 1. Each manipulator has three DOFS. It is assumed that 

the payload is rigidly grasped such that no slipping or rotation is possible at contact points.

Table 1. physical characteristic of the system

5.1 Single switch problem

The system is assumed to move the payload on a prescribed path defined by equation (13), see Figure 7. 

ss

ssy
sx

6
)(

10s0.7-02.1)(

s0.3)(

πϕ =

≤≤=
=

(13) 
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Figure 7. specified path and final configuration

This problem is solved taking advantage of the proposed method. The constant α  is considered to be 0.1 which 

means 1
1s  is taken as 0.1 and is2  as 0.2. As one can see after four steps the conditions of )(2 012 ssss f

ii −>− α  is 

violated and iε  is reduced from 0.1 to 0.047, and in next step to 0.0152. As the results in Table 2 shows, ap-

proximate switches converge to the real switch after six steps of learning process. As mentioned before this can 

be reduced if α  is chosen to be larger. Figure 8 shows the final trajectory and boundary of non-feasible region 

for desired trajectory in phase plane.

    Step    is1
is2

iii ssds 12 −= is& iε iδ it
1 0.1000 0.9000 0.8000 6.3781 0.1000 0.0856 0.2188

2 0.2000 0.6815 0.4815 8.8294 0.1000 -0.0357 0.1698

3 0.3000 0.6239 0.3239 10.4794 0.1000 0.0168 0.1700

4 0.4000 0.5052 0.1052 11.6739 0.1000 -0.0209 0.1628

5 0.4470 0.4798 0.0328 12.0865 0.0470 -0.0117 0.1637
6 0.4622 0.4765 0.0143 12.2121 0.0152 -0.0044 0.1647

Table 2. simulation results for single switch problem

Figure 8. simulation results of learning process in phase plane

5.2 Multi switch problem

The system is assumed to move the payload on a circular path defined by equation (14), see Figure 9. 
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Figure 9. specified path and final configuration

Solution of this problem also starts based on the single switch algorithm stated in section 3 with 08.0=α . As 

one can see from Table 3, after two steps,  the solution trajectory intersected the boundary of non-feasible region; 

As suggested in section 4, in next step of learning process, we tried to find one switch before 1cs  and one switch 

after 1cs . Simulation results for this process are given in Table 4. As one can see after 30 steps of learning proc-

ess both switches on left and right of 1cs  are converged. However, learning process for finding these switches 

are very costly. Another points which worth mentioning is that the results obtained in first learning step is 10%

more than the time elapse obtained from exact optimal solution of the problem, which is equal to 0.1981 sec. the 

next 30 steps of learning has reduced this 10% error to 1.3%. Figure 10 shows the final trajectory in phase plane 

as well as the non-feasible region boundary.

      step     is1
is2

iii ssds 12 −= is& iε iδ   contact       it
1 0.1000 0.9000 0.8000 5.6762 0.0800 0.0122 1 0.2182

2 0.1800 0.8032 0.6232 7.8189 0.0800 0.0122 0

Table 3. numerical results for circular path before crossing BNF

Figure 10. boundary of non-feasible region and solution path in phase plane
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ii
a

i
a

i
a

i
a sdsss ε&21

step

0.2278

0.2019

0.196

0.2013

0.2011

0.2009

0.2007

0.5406 0.9900 0.4494 5.7351

0.7406 0.8028 0.0622 6.6891

0.7656 0.7977 0.0321 6.9572

0.7856 0.7860 0.0004 7.0930

0.7856 0.7860 0.0004 7.0930

0.7856 0.7860 0.0004 7.0930

0.7856 0.7860 0.0004 7.0930

0.1058 0.3998 0.2940 5.8781 0.0050

0.1168 0.3763 0.2595 6.1843 0.0050

0.1328 0.4107 0.2779 6.6381 0.0050

0.1398 0.1767 0.0369 6.8417 0.0050

0.1403 0.1792 0.0389 6.8515 0.0050

0.1408 0.1817 0.0409 6.9005 0.0050

0.1413 0.1842 0.0429 6.9005 0.0050

1

5

10

15

20

25

30

Table 4. numerical result of near minimum time motion

6 Conclusion

Problem of on line computation of switching points for a time optimal problem of a manipulator moving along a 

specified path is considered. The procedure can be used for on line evaluation of open loop time optimal control 

for both serial and parallel manipulators moving on a prescribed path. The method is based on the idea of mov-

ing end effector on the specified path on consequent segments of maximum acceleration, constant velocity, and 

maximum deceleration, and to learn the control to reduce and adjust the constant speed interval at each step of 

the learning process. This way two switches finally converge to the exact one and the final error is also elimi-

nated. A development of the algorithm is also given for multi switch cases. The validity of the method is checked 

by solving time optimal problem for two cases of a double three link planar parallel manipulator, along a straight 

line and then along a circular line. The results for straight line show that in six steps of training, the final error is 

less than 0.44% and the travelling time is 0.28% more than the exact minimum time. These results are very 

promising both in accurate tracking and in fast learning process. Similar results are also reported for the circular 

path.
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