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Abstract. For the last 15 years, a methodology has been developed for sizing mechatronic systems.
Based on the use of inverse models described by bond graph, it has in particular the advantage of dras-
tically decreasing the number of calculus iterations, compared to the trial and error procedure of the
classical direct approach.
The aim of this article is to extend this sizing methodology to the case where only a part of the speci-
fications can be translated in terms of functions of time (and so where only a part of the model can be
inverted) and where the other part can be formulated as an optimal control problem. In particular, the
illustration of this extension on an academic example of two masses in series will show how a partially
inverted model can be coupled with the graphical construction of an optimizing bond graph established
in recent articles.

1 Introduction
Inverse modelling consists of determining the unknown inputs of the model directly from the specified outputs.
Taking advantage of this approach, a methodology has been developed for sizing mechatronic systems according
to energy and dynamic criteria [13]. Based on the bond graph language (chosen for its multi-domain, physical
and graphical aspects), this methodology consists of: graphically checking if the bond graph model is invertible
and if the specifications can be reached by the given model structure; then graphically constructing the bond graph
inverse model corresponding to the specific sizing problem under consideration; and then finding the unknown
inputs by simulating the resulting inverse model from the given specified outputs. One of the original features of
this methodology lies in its structural analysis step where graphical guidelines are given to the engineer to check
if his problem is well-posed. Moreover the benefits of such a methodology have been shown in some industrial
applications, especially in the automotive domain [8].
This methodology, however, can only be applied to the cases where the specifications can be translated in terms
of functions of time. This requirement is not so easy to meet in practice [9]. Design constraints are most of
the time expressed as: not crossing upper or lower limits, minimizing the weight or the energy consumption and
so on. In order to handle this kind of design constraint, recent articles [6, 2, 7, 10] presented the bond graph
formulation of an optimal control problem. The resulting procedure leads to graphically construct what it is called
an optimizing bond graph and to couple it with the initial bond graph model of the system under study. The
bond graph model obtained then mirrors a system of equations, identical to the optimality conditions given by
the Pontryagin Maximum Principle [14]. Up to now this optimization procedure was considered only for direct
models. The objective of this article is to substantiate the interest of such a procedure by coupling it with the sizing
methodology and so by adapting it for inverse models.
After having recalled in Section 2 the procedure for constructing an optimizing bond graph in the case of direct
models, Section 3 presents the coupling of inverse modelling with dynamic optimization through the academic
example of two masses in series. The two manners of formulating the problem (inverting then optimizing or
optimizing then inverting) are discussed in particular. Numerical results are then given in Section 4 to prove the
feasibility of such a coupling. Finally Section 5 indicates some research directions that will be interesting to carry
out.

2 Bond graph formulation of dynamic optimization
Coupling dynamic optimization with bond graph models has already been considered in [1, 5, 16]. However these
works only present direct methods for solving the optimization problem under consideration: bond graph models
are used only for modelling the system while the optimization is really performed by classical routines such as
the genetic algorithm [5, 16]. Here, as the final objective is to couple a dynamic optimization procedure with a
bond graph-based sizing methodology, constructing the solution of an optimization problem (or at least a system
of equations whose solving leads to the exact solution of the problem) through a bond graph model appears to be
relevant. This explains why indirect solving methods such as the Pontryagin Maximum Principle are considered
here.

Now let us suppose that the optimization problem is to find x and uopt such that:
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• the performance index V is minimized:

V =
∫ t f

t0
L (x,u, t)dt =

∫ t f

t0

1
2
[uT

opt ·Ruopt ·uopt +Pdiss]dt (1)

where x ∈ Rn is the state vector; u ∈ Rm denotes the input vector, u =
[

uT
u uT

opt
]T with uu ∈ Rmu (resp.

uopt ∈ Rmopt ) is the vector of fixed inputs (resp. of inputs to be optimized); Ruopt ∈ Rmopt×mopt is a weighting

matrix, supposed to be diagonal, Ruopt =

[
R−1

ue,opt 0
0 Ru f ,opt

]
with Rue,opt and Ru f ,opt the weighting matrices

respectively associated with the effort and flow sources to be optimized; Pdiss is all or a part of the energy
dissipated by the system;

• the initial and final conditions (2) on state and time are fixed;{
x(t0) = x0

x(t f ) = x f
(2)

• the state-space equations (3) of the model are taken as constraints.

ẋ = f(x,u, t) (3)

The Pontryagin Maximum Principle [14, 15] states then that the exact solution (xopt ,λλλ opt ,uopt) of such an opti-
mization problem is given by solving analytically the following system:⎧⎪⎪⎨⎪⎪⎩

ẋ =
∂Hp(x,λλλ ,u)

∂λλλ
λ̇λλ = −

∂Hp(x,λλλ ,u)
∂x

∂Hp(x,λλλ ,u)
∂uopt

= 0
(4)

where λλλ ∈ Rn is the co-state vector and Hp = L (x,u, t)+λλλ T · f(x,u, t) is called the Pontryagin function.

As already written, a procedure has been established for constructing, in a systematical manner, an augmented
bond graph which mirrors the equations of these optimality conditions (4). This procedure can be summed up in
the four steps below [6, 7]:

Step 1: Duplication. Duplicate the bond graph model of the system under study. The original part of the bond
graph model will hereafter be called initial bond graph while the duplicated part will be called optimizing bond
graph.
Step 2: Characteristics of the optimizing bond graph. In the optimizing bond graph, replace the characteristic
matrices R of the R-elements by their corresponding transposed and reversed sign matrices −RT .
Step 3: Take into account the performance index.
A - For the dissipative phenomena involved in the performance index, couple the R-elements present simultane-
ously in the initial bond graph and in the optimizing bond graph and which both correspond to the same phenom-

ena. Then, add the matrix 1
2 [Ropt + T] as the lower extra diagonal submatrix where Ropt =

[
Rrr Rcr
Rrc Rcc

]
is the

characteristic matrix of the corresponding R-elements in the initial bond graph and T =

[
RT

rr −RT
cr

−RT
rc RT

cc

]
(the

subscripts r and c correspond to the ports in a resistance and in a conductance causality respectively when the
bond graph model is in preferential integral causality). Note that, in the specific case of 1-port R-element, the term
1
2 [Ropt +T ] reduces itself to Ropt .
B - For the inputs to be determined, insert a 0-junction (resp. 1-junction) between each effort source (resp. flow
source) and the structure junction and then insert one multiport R-element per pair of corresponding sources into
the initial and optimizing bond graphs. For effort sources (resp. flow sources), set the characteristic matrices to[

Rue,opt 0
Rue,opt −Rue,opt

]
(resp.

[
Ru f ,opt 0
Ru f ,opt −Ru f ,opt

]
).

C - For the inputs not to be optimized (i.e. which are supposed to be known), replace the corresponding MSe and
MS f -elements respectively by D f and De-elements in the optimizing bond graph.
Step 4: Bicausality assignment. Replace the source elements involved in the performance index by double de-
tectors DeD f in the initial bond graph and by double sources SeS f in the optimizing bond graph. These double
sources impose both null efforts and flows. Then propagate bicausality [3] from the double sources to the dou-
ble detectors through the R-elements associated with the inputs to be determined. Finally assign the preferential
integral causality to the rest of the model in order to obtain the augmented bond graph, mirror of the optimality
conditions (4).
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3 Coupling of inverse modelling with dynamic optimization
The first advantage of the optimization procedure described in the previous section lies in the fact that the optimality
conditions are obtained in a systematical and graphical manner contrary to the Pontryagin Maximum Principle
which requires analytical developments. Now even if this argument is appealing, the main interest of this procedure
is to couple dynamic optimization with the sizing methodology and so with inverse modelling.

3.1 Framework

To initiate the coupling between inverse modelling and dynamic optimization, only linear and time-invariant sys-
tems are addressed in this article. The sizing problem is considered to be the determination of the open-loop
controls in the case where the specifications can be divided into two parts: a first one where the specification can
be expressed as a function of time and another one where the design constraint formulates itself as a problem of
dissipative energy minimization.

m2 m1
k2 k1

b2 b1

F1
V1F2

Figure 1: Example of two masses in series: technological diagram.

To illustrate this case, let us consider the example of two masses in series, joined by springs and dampers in parallel
and where the controls are the efforts F1 and F2 (Fig. 1). Now suppose that the sizing problem is to find F1 and F2
so that:

• the speed V1 of the first mass m1 follows a given trajectory V1re f (specification n◦1);
• the dissipative energy Pdiss,b2 due to the second damper is minimized (specification n◦2).

The key idea here is to simultaneously meet specification n◦1 by inversion and specification n◦2 by dynamic
optimization. The following sections will present the two possible approaches for treating such a coupling: the
first one where the model is partially inverted before being optimized and the second one where, on the contrary,
the optimization problem is formulated before the inversion.

3.2 Approach 1: inverse modelling before optimization

Let us proceed to the first approach consisting of previously inverting the model before formulating the optimiza-
tion problem.

Bond graph model: State-space model:

ṗ2

1

I : m2

0Se
F2

1

q̇2

C : 1/k2 R : b2

ṗ1

0 DeDf

SeSf

1

I : m1

V1re f

F1

1

q̇1

C : 1/k1 R : b1

0

p1 = m1V1re f (5)⎧⎪⎨⎪⎩
ṗ2 = b1V1re f −

b1
m2

p2 − k1q1 +F2

q̇1 = −V1re f + 1
m2

p2

q̇2 = − k2
b2

q2 + 1
b2

F2

(6)

Output equation:

F1 = m1V̇1re f +b1V1re f −
b1
m2

p2 − k1q1 (7)

Table 1: Inverse model with respect to (F1,V1).

In the case of the example, meeting specification n◦1 by inversion amounts to partially inverting the bond graph
model with respect to the couple (F1,V1) by using the bicausality concept (Tab. 1). It can then be deduced by the
exploitation of the causality assignment that the remaining dynamic part of this inverse model is governed by the
state-space equations (6) and that, once the optimal state vector is known, the unknown F1 will be computed such
as in (7).

Once this first step has be carried out, specification n◦2 can be met by considering only the remaining dynamic
part of the inverse model and formulating the following optimal control problem: ‘find the input F2 such that the
performance index V = 1

2
∫ t f

t0 (
F2

2
RF2

+Pdiss,b2)dt is minimized when initial and final conditions on state and time are
fixed and the state-space equations (6) are taken as constraints’. The unknowns of this optimization problem are
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V1re f

F1

0

ṗ1

I : m1

DeDf10

I : m2

1

q̇2

C : 1/k2
R :

(
b2 0
b2 −b2

)
1

q̇1

C : 1/k1 R : b1

ṗ2

10
F2

(
RF2 0
RF2 −RF2

)
: R

0DeDf

C : 1/k1

1

R : −b1

I : m2

ṗλ2 λ2

10 0 SeSf1

q̇λ3λ3
q̇λ4λ4

DeDf

0

0

0

0
0SeSf

C : 1/k2

1

Initial bond graph

Optimizing bond graph

Inversion to meet
the specification n◦1

Taking into account
the performance index

to meet the specification n◦2

Figure 2: Augmented bond graph model coupling both inversion and optimization.

(p2,q1,q2,λ2,λ3,λ4,F2). After having constructed the corresponding Pontryagin function, applying the Pontryagin
Maximum Principle in an analytical manner leads then to the optimality conditions (8).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṗ2 =
∂Hp
∂λ2

q̇1 =
∂Hp
∂λ3

q̇2 =
∂Hp
∂λ4

λ̇2 = −
∂Hp
∂ p2

λ̇3 = −
∂Hp
∂q1

λ̇4 = −
∂Hp
∂q2

∂Hp
∂F2

= 0

⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṗ2 = b1V1re f −
b1
m2

p2 − k1q1 +F2

q̇1 = −V1re f + 1
m2

p2

q̇2 = − k2
b2

q2 + 1
b2

F2

λ̇2 = b1
m2

λ2 −
1

m2
λ3

λ̇3 = k1λ2

λ̇4 = −
k2

2
b2

q2 + k2
b2

λ4 + k2
b2

F2

( 1
RF2

+ 1
b2

)F2 = k2
b2

q2 −λ2 −
1
b2

λ4

(8)

As a consequence, according to approach 1, finding the solution (p1, p2,q1,q2,λ2,λ3,λ4,F1,F2) which meets spec-
ifications n◦1 and n◦2 on V1 and Pdiss,b2 amounts to solving the following system, made of equations (5), (7) and
(8): ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1 = m1V1re f

ṗ2 = b1V1re f −
b1
m2

p2 − k1q1 +F2

q̇1 = −V1re f + 1
m2

p2

q̇2 = − k2
b2

q2 + 1
b2

F2

λ̇2 = b1
m2

λ2 −
1

m2
λ3

λ̇3 = k1λ2

λ̇4 = −
k2

2
b2

q2 + k2
b2

λ4 + k2
b2

F2

F1 = m1V̇1re f +b1V1re f −
b1
m2

p2 − k1q1

( 1
RF2

+ 1
b2

)F2 = k2
b2

q2 −λ2 −
1
b2

λ4

(9)

Now, from a bond graph point of view, as the remaining dynamic part of the inverse model can be viewed, to
some extent as a direct model with x =

[
p2 q1 q2

]T , uu =
[
V1re f

]
and uopt = [F2], the previous procedure for

constructing optimizing bond graphs can still be applied to this case. The only differences lie in the fact that:

• only the remaining dynamic part (the part of the bond graph model whose causality has remained the same
even after the partial inversion) is duplicated to form the optimizing bond graph;
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• each SeS f -element representing a fixed input in the initial bond graph (i.e. V1re f in the case of the example)
must be replaced by a DeD f -element in the optimizing bond graph;

• each DeD f -element in the initial bond graph has to be replaced by a SeS f -element imposing both null flow
and effort in the optimizing bond graph.

By following these modifications and applying the four steps previously described in Section 2, we obtain the
augmented bond graph model in Fig. 2. The analytical exploitation of this causal augmented bond graph will
show that it leads to the same result as (9).

3.3 Approach 2: optimization before inverse modelling

Now let us proceed to the second approach where the optimization problem is formulated before the inversion.

Bond graph model: State-space model:

ṗ2

1

I : m2

0Se
F2

1

q̇2

C : 1/k2 R : b2

ṗ1

0 Se

Df

1

I : m1

V1

F1

1

q̇1

C : 1/k1 R : b1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ṗ1 = − b1

m1
p1 + b1

m2
p2 + k1q1 +F1

ṗ2 = b1
m1

p1 −
b1
m2

p2 − k1q1 +F2

q̇1 = − 1
m1

p1 + 1
m2

p2

q̇2 = − k2
b2

q2 + 1
b2

F2

(10)

Output equation:

V1 =
1

m1
p1 (11)

Table 2: Direct model.

In the case of the example, this is the same as starting with the direct bond graph model (Tab. 2) governed by
the state-space equations (10) and the output equation (11). On the one hand, meeting specification n◦1 can be
reformulated as satisfaying the following constraint:

V1re f =
1

m1
p1 (12)

On the other hand, meeting specification n◦2 can be obtained by solving the following dissipative energy minimiza-
tion problem: ‘find the inputs F1 and F2 such that the performance index V = 1

2
∫ t f

t0 (
F2

2
RF2

+Pdiss,b2)dt is minimized
when initial and final conditions on state and time are fixed and the state-space equations (10) and the output
equation (12) are taken as constraints’. In fact, as the unknown F1 is determined by both inversion and optimiza-
tion, the space of solutions for F1 has to be restricted to the space where the inversion constraint (12) is satisfied.
However, as this constraint (12) is algebraic, the Pontryagin Maximum Principle is no longer available. One has to
consider the optimality conditions given by the Euler-Lagrange conditions (13) to solve the problem [15].⎧⎪⎨⎪⎩

∂Fa
∂x − d

dt
∂Fa
∂ ẋ = 0

∂Fa
∂λλλ − d

dt
∂Fa
∂ λ̇λλ

= 0
∂Fa

∂uopt
− d

dt
∂Fa

∂ u̇opt
= 0

(13)

where λλλ ∈ Rq is the co-state vector, q is the number of constraints, φi(x,u, t) = 0 is the ith constraint and Fa =

L (x,u, t)+
q

∑
i=1

λiφi(x,u, t) is called the augmented function.

In the case of the example, applying the Euler-Lagrange conditions leads to the system (14).
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Fa
∂λ1

− d
dt

∂Fa
∂ λ̇1

= 0
∂Fa
∂λ2

− d
dt

∂Fa
∂ λ̇2

= 0
∂Fa
∂λ3

− d
dt

∂Fa
∂ λ̇3

= 0
∂Fa
∂λ4

− d
dt

∂Fa
∂ λ̇4

= 0
∂Fa
∂λ5

− d
dt

∂Fa
∂ λ̇5

= 0
∂Fa
∂ p1

− d
dt

∂Fa
∂ ṗ1

= 0
∂Fa
∂ p2

− d
dt

∂Fa
∂ ṗ2

= 0
∂Fa
∂q1

− d
dt

∂Fa
∂ q̇1

= 0
∂Fa
∂q2

− d
dt

∂Fa
∂ q̇2

= 0
∂Fa
∂F1

− d
dt

∂Fa
∂ Ḟ1

= 0
∂Fa
∂F2

− d
dt

∂Fa
∂ Ḟ2

= 0

⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṗ1 = − b1
m1

p1 + b1
m2

p2 + k1q1 +F1

ṗ2 = b1
m1

p1 −
b1
m2

p2 − k1q1 +F2

q̇1 = − 1
m1

p1 + 1
m2

p2

q̇2 = − k2
b2

q2 + 1
b2

F2

V1re f = 1
m1

p1

λ̇1 = b1
m1

λ1 −
b1
m1

λ2 + 1
m1

λ3 −
1

m1
λ5

λ̇2 = − b1
m2

λ1 + b1
m2

λ2 −
1

m2
λ3

λ̇3 = −k1λ1 + k1λ2

λ̇4 =
k2

2
b2

q2 + k2
b2

λ4 −
k2
b2

F2

λ1 = 0
( 1

RF2
+ 1

b2
)F2 = k2

b2
q2 +λ2 + 1

b2
λ4

(14)

Then, once this first step has be carried out, specification n◦1 can be met by inversion with respect to the couple
(F1,V1). Proceeding to such an inversion and substituting λ1 by its value, then enables us to conclude that, accord-
ing to approach 2, finding the solution (p1, p2,q1,q2,λ1,λ2,λ3,λ4,λ5,F1,F2) amounts to solving the following
systems: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1 = m1V1re f

ṗ2 = b1V1re f −
b1
m2

p2 − k1q1 +F2

q̇1 = −V1re f + 1
m2

p2

q̇2 = − k2
b2

q2 + 1
b2

F2

λ̇2 = b1
m2

λ2 −
1

m2
λ3

λ̇3 = k1λ2

λ̇4 =
k2

2
b2

q2 + k2
b2

λ4 −
k2
b2

F2

F1 = m1V̇1re f +b1V1re f −
b1
m2

p2 − k1q1

( 1
RF2

+ 1
b2

)F2 = k2
b2

q2 +λ2 + 1
b2

λ4

(15)

{
λ1 = 0
λ5 = −b1λ2 + m1

m3
λ3

(16)

It can be noticed that, since λ1 and λ5 each appear in only one equation, solving them is totally independent from
solving the other variables. In fact, only solving the system (15) is sufficient to give the answer to the sizing
problem under consideration and to determine the optimal values of the variables p1, p2, q1, q2, F1 and F2.

Finally, one can note that this system (15) is identical to the system (9) of optimality conditions obtained by
approach 1. In fact, if some differences between the signs of the equations are noticed, this is only due to the
fact that the variables λi are defined to within a + or − sign between the Pontryagin Maximum Principle and the
Euler-Lagrange method. As a consequence, the translation of the system (15) into the bond graph language will be
the same as in Fig. 2. An equivalent but simplified augmented bond graph is possible too and is shown in Fig. 3.

3.4 Discussion

The previous subsections have shown the two possible approaches for coupling inversion and dynamic optimization
on the specific example of two masses in series. Let us discuss here some features of each approach and draw a
brief comparison.

At first sight, approach 2 consisting of optimizing the direct model and then inverting it seems to be more com-
plicated than approach 1. In fact, this approach requires to a priori anticipate the inversion by considering an
additional constraint (such as one of the output equations of the direct model) for the optimization problem. With-
out such an anticipation, there is no guarantee that the solutions found will satisfy the inversion specifications and
thus meet the requirements of the sizing problem. Even if this task is relatively easy for the example dealt with
in this article, this can reveal itself not so simple in the general case. Moreover, taking into account additional
constraints implies the introduction of additional variables (e.g. λ1 and λ5 in the example) and so of additional
optimality conditions (e.g. the system (16) in the example) to solve the problem. For sizing problems with nu-
merous specifications and where it is necessary to consider many constraints, this approach can thus appear as less
efficient, causing the solving of a non-simplified system of optimality conditions. The number of unknowns will
a priori be greater than with approach 1 and will then require more calculation time. Here, the example of two
masses in series is a very specific case where solving the additional variables is totally independent of solving the
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ṗ1

I : m1

DeDf10

I : m2

1

q̇2

C : 1/k2
R :

(
b2 0
b2 −b2

)
1

q̇1

C : 1/k1 R : b1

ṗ2
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Figure 3: Simplified augmented bond graph model coupling both inversion and optimization.

other variables and where the simplication of the optimality conditions can be carried out manually. In the general
case, this simplication will not be so explicit. In particular, further studies have to be made on other examples to
conclude if these two approaches are really equivalent in the general case or not.

Now, compared to approach 2, approach 1 consisting of inverting the model and then optimizing it, appears not
only to be easier but more intuitive too: once the model is inverted, one can proceed to optimization without
anticipating anything. If the optimization problem is formulated on the remaining dynamic part of the model,
it automatically takes into consideration the constraints due to the inversion without introducing any additional
variable λi. Moreover it enables us to check, in one sense, if the sizing problem is well-posed or not:

• if all of the inputs are entirely determined by the specified outputs, it means that the model has been totally
inverted. Adding a sizing specification expressed in an optimization problem form will amount to obtaining
an over-constrained problem with no solution.

• if some inputs remain undetermined on the inverted model, it means that the problem is under-constrained
and that it is possible to add some sizing specifications.

Finally, it is worth noting that, even if such a coupling is appealing, the two approaches present the same ambiguity:
no indication is given to determine according to which couple of variables the inversion has to be made to give a
posteriori the smallest performance index value.

4 Numerical results
In the specific example of two masses in series, the previous sections have proved that approaches 1 and 2 lead to
the same system (9) of optimality conditions. This section will handle more specifically the numerical solving of
such equations.

In fact, if the initial and final conditions on state and time are fixed by the initial sizing problem, one can note that
no a priori information is given on the initial and final values of the co-state vector λλλ . Unfortunately, since the
system of optimality conditions is a set of differential-algebraic equations, its solving requires at least the initial
value of the co-state vector.

If the inputs are replaced by their expressions which are functions of the state and the co-state vectors, the system
of the optimality conditions can, however, be written in the following form:(

ẋ(t)
λ̇λλ (t)

)
= A

(
x(t)
λλλ (t)

)
+Bure f (t) (17)
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As this system is linear and time-invariant, its analytical solving results in [4]:(
x(t)
λλλ (t)

)
=expA(t−t0)

(
x(t0)
λλλ (t0)

)
+

∫ t

t0
expA(τ−t0)Bure f (τ)dτ

=

(
M1(t) M2(t)
M3(t) M4(t)

)(
x(t0)
λλλ (t0)

)
+

(
N1(t)
N2(t)

)
(18)

Then, taking into account the fixed conditions on the initial and final state leads to the following equation:

x(t f ) =
(

M1(t0) M2(t0)
)(

x(t0)
λλλ (t0)

)
+N1(t f ) (19)

Thus, as already shown in [2], it can be deduced that the initial value of the co-state vector is given in an analytical
manner by:

λλλ (t0) = M−1
2 (t0)(x(t f )−M1(t0)x(t0)−N1(t f )) (20)

This method has in particular been applied to the case of the example of two masses in series. Tab. 3 sums up the
several numerical values fixed by the sizing problem and used to parametrize the model. Note on that subject that
the sizing problem can not impose arbitrary initial and final conditions on state: these values have to be coherent
with the given specificied outputs (here only the values of p1 have to match with V1re f , the initial and final values
of the other state variables can be chosen arbitrarily).

Model parameters: Optimization problem parameters:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

m1 = 10.0 kg
m2 = 5.0 kg
k1 = 1.0 N/m
k2 = 2.0 N/m
b1 = 0.1 N/(m.s−1)
b2 = 0.4 N/m

⎧⎪⎪⎪⎨⎪⎪⎪⎩
t0 = 0 s
t f = 5 s
RF2 = 10.0
V1re f (t) = sin(t) m.s−1

State initial conditions: State final conditions:⎧⎪⎪⎪⎨⎪⎪⎪⎩
p10 = m1V1re f (t0) = 0 kg.m.s−1

p20 = 0.5 kg.m.s−1

q10 = 0.4 m
q20 = 0.3 m

⎧⎪⎪⎪⎨⎪⎪⎪⎩
p1 f = m1V1re f (t f ) ≈−9.58924 kg.m.s−1

p2 f = 1.0 kg.m.s−1

q1 f = 2.5 m
q2 f = 5.0 m

Table 3: Parameters for the example of two masses in series.

Because of the difficulties announced in [11] to calculate exponentials of matrices, it has been preferred to deter-
mine the values of the matrices M1(t0), M2(t0) and N1(t f ) by simulation as detailed in [10]. Thanks to the MS1
software (a software which supports, among another things, the bond graph language) [12], these simulations have
enabled us to obtain: ⎧⎪⎨⎪⎩

λ20 = −1.75168 m.s−1

λ30 = −3.02466 N
λ40 = −1.55337 N

(21)

After having injected these initial values, the simulation of the augmented bond graph shown in Fig. 3 (and then
of the system (9)) has been carried out on MS1. Fig. 4 thus presents the evolution of the state variables, the inputs
and the two variables representing the initial specifications: V1 and Pdiss,b2 .

It can in particular be checked that the state variables reach the specified final values at the time t f (Fig. 4(a)) and
that specification n◦1 is well satisfied since the speed V1 of the first mass perfectly follows the sinusoidal form of
V1re f (Fig. 4(c)).

5 Conclusion
Up to now the optimization procedure has only been carried out on direct models. The performance index was
minimized by taking into account the state-space equations of the model and then by solving the optimality condi-
tions given by the Pontryagin Maximum Principle. Nothing a priori forbids considering constraints representing
the state-space equations of an inverse model. Mathematically, in both cases (inverse models or direct models),
it amounts to taking into account a set of differential-algebraic equations. The coupling of dynamic optimization
with inverse modelling is then legitimate. This is particularly relevant in the sizing context. Coupling the sizing
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(a) State variables. (b) Inputs.

(c) Verification of the specification n◦1. (d) Verification of the specification n◦2.

Figure 4: Numerical results for the approach 1.

methodology based on the use of inverse models to the optimization procedure has the advantages of the two ap-
proaches by limiting their drawbacks. In fact the optimization procedure enables the handling of design constraints
not expressed as functions of time, while the inversion gives a stronger constraint in term of trajectory tracking
(compared to a problem minimizing the error between the output and the specified trajectory on this output). It
then enables us to handle some very general sizing problems where the specifications are of a heterogeneous kind.

This article presents the first research carried out on treating this type of coupling. The first challenge was in
particular to adapt the optimizing procedure to the case of inverse models. The adaptation has been made on
the example of two masses in series. This has allowed some conjectural modifications on the construction of
optimizing bond graphs for inverse models. In fact, the only difference with the optimization procedure for direct
models lies in the fact that:

• the optimizing bond graph is only formed by the remaining dynamic part of the initial inverse model;
• each SeS f -element (resp. DeD f -element) in the initial bond graph is replaced by a DeD f -element (resp. a

SeS f imposing both null flow and effort) in the optimizing bond graph.

Of course, the extension of this optimization procedure has to be demonstrated theoretically to check if these
modifications are still available for the general case.

Besides, not only the optimality conditions have been successfully translated in term of an augmented bond graph,
but some numerical results have been given to prove the feasibility of such a coupling. The simulation of the result-
ing augmented bond graph has enabled the determination of the optimal controls which match the specifications
given by the sizing problem.

From a theoretical point of view, the optimality conditions have been obtained according to two different ap-
proaches: the first one where the model is inverted before being optimized and the second one where, on the
contrary, the optimization problem is formulated before the inversion. The need to separate the inversion from the
formulation of the optimization problem is obviously due to a human point of view where the analytical calculus
has to be carried out in a chronological order. In reality, the numerical solvings of the equations resulting from the
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inversion and of those issued from the optimization are performed simultaneously. In the example of two masses in
series, the two approaches lead to the same system of optimality conditions even if the second approach (consisting
of optimizing and then inverting) seems to be more complicated to carry out. However, this example can reveal
itself as a very specific problem and further cases have to be studied to conclude if these two approaches are really
equivalent in the general case. Anyway, the first approach appears as more intuitive and more pertinent in the
sense that it allows us to check if the sizing problem is well-posed or not: if the model is entirely inverted (i.e. the
totality of its inputs are determined by the specified outputs), no sizing specification can be added whereas if the
model is partially inverted (i.e. some inputs remain undetermined after the inversion), sizing specifications such as
optimization problems can be added.

Finally, it is worth underlying that this article constitutes the first step towards the coupling between dynamic op-
timization and inverse modelling. In this way it deserves further development concerning the comparison between
the theoretical approaches (are they really equivalent ?), the extended optimization procedure (is it still valid in the
general case ?), the numerical solving (how to solve the case of non-linear systems where no analytical solution
is given to determine the initial co-state ?) and the applications (the example dealt with in this article concerns an
optimal control problem but the problem of generating specifications can be envisaged too).
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