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Abstract: Discovering linear dependencies in data sets is discussed in the paper as a part of data mining 
approach [1]. The proposed method is based on the minimization of a special type of convex and piecewise 
linear (CPL) criterion functions defined on a given data set C [2]. The division of the set C into a family of 
linearly dependent clusters Ck allows to form a family of local regression type models. As a result, each subset 
Ck can be characterized Ck by its own linear model. The K-plans algorithm which is similar to the K-means 
algorithm can be used for dividing the set C into a family of linearly dependent clusters Ck. Also a different 
approach to this problem, based on the CPL criterion functions is discussed here.  

1. Introduction 

Data mining is a process of extracting hidden patterns from data [1]. Generally, data mining techniques can be 
useful in transformation of data sets into needed information. Such techniques are commonly used in a wide 
range of applications, such as marketing, fraud detection and scientific discovery. The term patterns could stand 
for regularities, trends, association rules or clusters in the explored data set.  

A fundamental role in the cluster analysis is played by the K-means algorithm [2]. The K-means algorithm can 
be used for the purpose of dividing set C into a family of a priori given number K of clusters Ck  (k = 1,…, K). 
The central points wk can be identified for each subset Ck during the K-means procedure through thee 
minimization of convex and piecewise linear (CPL) criterion functions [3]. Modification of the K-means 
algorithm into the K-plans algorithm has been proposed recently [4]. The proposed method is based on the 
minimization of a special type of the CPL criterion functions defined on a given data set C [2]. The basis 
exchange algorithms which are similar to linear programming allow one to find the minimum of these CPL 
function efficiently, even in the case of large multidimensional data sets [3]. The minimization of the CPL 
criterion function during the K-plans procedure allows to identify the actual values of the parameters wk and θk 
of the central hyperplane H(wk,θk) = {x[n]:  wk[n]Tx[n]  = θk} for each subset Ck. In the next step of the K-plans 
algorithm the division of the set C into the subsets Ck is modified and adopted to the actual central hyperplane 
H(wk,θk). The central hyperplane H(wk,θk) defines the local, linear dependency characteristic for a given subset 
Ck. As a result, each subset Ck can be characterized by its own linear model of dependencies. 

The procedure of hidden linear dependencies extraction from data set different from the K-plans is also 
described and analyzed in the presented paper. The presented procedure is based on monotonicity properties of 
the the CPL criterion function. This procedure allows to identify a family of K subsets Ck and local, linear 
dependencies without assuming a priori the value of the number K. The number K of linear models results from a 
structure of the explored data set C.   

The proposed approach can be used for solving a variety of data mining problems. One of them is discovering 
and analysing linearly dependent patterns (models) in data sets Data aggregation into linearly dependent subsets 
Ck can be combined in this approach with feature selection. 

2. Feature vectors and central points 

Let us take into considerations the set C of m feature vectors xj[n] = [xj1,…,xjn]
T belonging to a given                             

n-dimensional feature space F[n] (xj[n] ∈ F[n]): 
 

C = {xj[n]},  where  j = 1,..., m  (1) 

 
Components xji of the vector xj[n] could be the numerical results of n standardized examinations of given objects 
Oj (xji ∈ {0,1} or xji ∈ R). Each vector xj[n] can be treated as a point of the n-dimensional feature space  F[n]. 
 
In accordance with the K-means algorithm, feature vectors xj[n] are divided into subsets Ck on the basis of actual 
central points (means) wk[n] = [w1,…,wn]

T (wk[n] ∈ Rn): 
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                   (∀j∈ {1,....., m}) (∀k′ ∈ {1,....., K}) 
                      if (ρ(xj[n], wk[n]) <  ρ(xj[n], wk′[n]),  then  xj[n]∈ Ck, and  j∈ Jk 

(2) 

 
where ρ(xj[n],wk[n]) is the distance between the feature vector xj[n] and the central point wk[n], and Jk is the set 
of indices j of those vectors xj[n] which have been allocated into the subset Ck. 
 
The subsets Ck generated in accordance with the rule (2) allow to redefine new central points wk′[n]. The central 
points wk′[n] of the subset Ck are computed through the minimization of the criterion function Qk(w[n]) defined 
on the elements xj[n] of the subsets Ck:      
 

Qk(w[n]) = � αj || xj[n] – w[n]|| 
                                                                    j∈ Jk 

(3) 

 
where ||xj[n] – w[n]|| is the norm of the vector xj[n] – w[n] with the price αj (αj  >  0), and wk′[n] is the minimum 
point of the function Qk(w[n]): 
 

(∀w[n])  Qk(w[n]) ≥ Qk(wk′[n])   (4) 

 
The new central points wk′[n] allow to define new subsets Ck′ in accordance with the rule (2). The K-means 
procedure stops when the difference between two successive central points wk[n] and wk′[n] is sufficiently small 
(in accordance with a given parameter ε > 0):     
 

(∀k ∈ {1,....., K})    ||wk′[n] –  wk[n]||  ≤  ε 
                                                                   

(5) 

 
The minimization procedure of the function Qk(w[n]) (3) depends on the choice of the norm || xj[n] – w[n]||. 
Commonly used is the Euclidean norm L2  [3]:   
 

||xj[n] – w[n]||L2   =  (xj[n] – w[n])T(xj[n] – w[n])1/2
 

(6) 

 
The  L1  and  L∞ norms are also used in the K-means algorithm:     
 

|| xj[n]  – w|[n] |L1   =  � | xji – wi |
 

                                                                                     i = 1,…,n 
(7) 

 
and  
  

|| xj[n]  – w[n]||L∞   =  max | xji – wi |
 

                                                                                                            i
                                                                   

(8) 

 
where w[n] = [w1,.......,wn]

T. 
 
The minimum point wk′[n] (4) of the function Qk(w[n]) (3) can be found analytically in the case the Euclidean 
norm L2. The criterion function Qk(w[n]) (3) is convex and piecewise linear (CPL) in the case the norms L1  (7) 
and L∞  (8). The basis exchange algorithms allow one to find the minimum (4) in this case [3]. 
 
In accordance with the K-plans algorithm, feature vectors xj[n] are divided into subsets Ck on the basis of actual 
central hyperplanes H(wk[n],θk): 
 

H(wk[n],θk) = {x[n]:  wk[n]Tx[n]  = θk} (9) 

 
where the parameters wk[n] and θk can be found through the minimization of the convex and piecewise linear 
(CPL) criterion function Φk(w[n])  (which is described later).      
 
The distance ρH(xj[n];wk[n],θk) of the feature vectors xj[n] from the hyperplanes H(wk[n],θk) can be computed in 
accordance with the following formula:  
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ρH(xj;wk[n],θk) = | wk[n]Txj[n] / ||wk[n]||  -  θk] | / ||wk[n]||    (10) 

 
The distance function ρH(xj[n];wk[n],θk) can be used for the division of feature vectors xj[n] into subsets Ck in 
accordance with the formula (2). 
 
3. Convex and piecewise linear (CPL) criterion functions Φk(w[n]) 

Let us consider convex and piecewise linear (CPL) penalty functions ϕj(w) defined on the feature vectors xj from  
the set C (1) [4]: 
 
(∀xj[n] ∈ C)                                       δ - w[n]Txj[n]          if     w[n]Txj[n]  ≤   δ    
                           ϕj(w[n])    =   

                                                          w[n]Txj[n] - δ         if     w[n]Txj[n]  >  δ 

 
(11) 

 
where δ is some parameter (margin) (δ > 0).  
 
The penalty functions ϕj(w)  are equal to the absolute values |δ - w[n]Txj[n]| (Fig. 1). 

  

ϕ  δ,j(w ) 

  
δ

 
w Tx  

 

 

Fig. 1. The penalty function ϕj(w[n]) (11) 

The criterion function Φk(w[n]) is defined as the weighted sum of the penalty functions ϕj(w[n]) (11) related to 
the vectors xj[n] from the subset Ck: 
       
Φk(w[n]) = Σ αj ϕj(w[n]),   where  αj  >  0  
                                  j∈ Jk

  
(12) 

 
The positive parameters αj in the function Φk(w[n]) can be treated as the prices of particular vectors xj.  
 
The criterion function Φk(w[n]) (12) is convex and piecewise linear as the sums of such type of functions                   
αj ϕj(w[n]).   
 
Each feature vector xj[n] from the set C (1) defines the hyperplane hj in the parameter (weight) space Rn:  
    
(∀xj[n] ∈ C)          hj =  {w[n]: (xj[n])Tw[n]  =  δ}   (13) 

 
The hyperplanes hj (13) are linked to the penalty functions ϕ j(w[n]) (11). The function ϕ j(w) (11) is equal to 
zero if and only if, the vector w[n] is situated on the hyperplane hj (13).  
 
Any set of n linearly independent feature vectors xj[n] (j∈ Jk) can be used for designing the non-singular matrix  
Bk[n] = [xj(1),…, xj(n)] with the columns composed from these vectors. The non- singular matrix Bk[n] is called  
the k-th basis of the feature space F[n]. The vectors xj[n] (j∈Jk) from this set define those n hyperplanes hj (13) 
which pass through the below point (vertex) wk[n]:   
 
Bk[n]Twk[n]  =  δδδδ[n]  =  [δ,…,δ]T =  δ [1,…,1]T = δ 1[n]  (14) 

or 
    wk[n]  = (Bk[n]T)-1 δδδδ[n] =  δ (Bk[n]T)-11[n]  (15) 

726

I. Troch, F. Breitenecker, eds.      ISBN 978-3-901608-35-3



 
In the case of  ′′short′′ vectors xj[n], when the number m of the vectors xj[n] is much greater than the vectors 
dimensionality n (m >> n), there may exist many bases Bk[n] (14) and many vertices wk[n] (15). It can be proved 
that the minimal value Φk

* of the criterion functions Φk(w[n]) (12) is situated in one of the vertices wk[n] (15) 
[6]: 
 

 
 
 

The optimal parameter vector wk
*[n] is used for the definition of the below hyperplane H(wk

*[n], δ) (9) in the 
feature space F[n].: 
 

   H(wk
*[n], δ) = {x[n]:  wk

*[n]Tx[n]  =  δ}                                                   (17) 

 
Theorem 1: The minimal value Φk(wk

*[n]) (16) of the criterion function Φk(w[n]) (12) with δ ≠ 0 is equal to zero  
(Φk(wk

*[n]) = 0), if and only if all the feature vectors xj[n] from the subset Ck are situated on some hyperplane 
H(w[n],θ)) (9), with θ ≠ 0. 
 
Proof:  Let assume that the feature vectors xj[n] from the subset Ck are situated on some hyperplane H(w[n],θ) 
(9) with θ ≠ 0. In this case, the following equations are fulfilled:   
    
(∀xj[n] ∈ C)     w[n]T xj[n]  =  θ     or     (δ / θ ) w[n]T xj[n]  =  δ      (18) 

 
thus  (11) 
   
(∀xj[n] ∈ Ck)     ϕj((δ / θ )w[n]) =  0  (19) 

 
On the other hand, if the conditions ϕj(w[n]) =  0 (8) are fulfilled for all the feature vectors xj from the subset Ck, 
then these vectors have to be situated on the hyperplane H(w[n],θ)) (9) . 
 
If all the feature vectors xj[n] from the subset Ck (5) are situated on some hyperplane H(wk[n],θ) (9) with θ  = 0, 
then  the minimal value Φk(wk

*[n]) (16) of the criterion function Φk(w[n]) (12) is equal to zero  (Φ(wk
*[n]) = 0) 

only if δ = 0.  
 
It has been proved that the minimal value Φk(wk

*[n]) (16) of the criterion function Φk(w[n]) (12) does not 
depend on linear, non-singular data transformations (the invariance property)  [4]:  
 

 
 
 

where Φ′(wk′[n]) is the minimal value (16) of the criterion functions Φ′(w[n]) (12) defined on the transformed 
feature vectors xj′[n]: 
 

 
 
 

where A[n] is a non-singular matrix of dimension (n x n) (A-1[n] exists).  
 
The minimal value Φk(wk

*[n]) (16) of the criterion function Φk(w[n]) (12) defined on the centred vectors             
xj′[n] = xj[n] - mk[n] does not depend on translations xj′[n] + b[n] of the centred vectors xj′[n], where b[n] is an 
arbitrary vector and mk[n] is the mean vector in the subset Ck. 
 
The minimal value Φk(wk

*[n]) (16) of the criterion function Φk(w[n]) (12) is characterised by two below 
montonicity properties: 
 

 
 
 

   (∃wk
*[n])   (∀w[n])   Φ k(w[n]) ≥ Φ k(wk

*[n]) = Φ k
*

 (16) 

    (∀xj[n] ∈ Ck)   xj′[n] = A[n] xj[n] 

  
(21) 

       Φ′(wk′[n]) =  Φ(wk
*[n]) 

  
(20) 
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The property I (the monotonicity in respect to reducing of the subset Ck) 
 
The reducing of the subset Ck to Ck′ by neglecting some feature vectors xj[n] can not result in an increase of the 
minimal value Φk(wk

*[n]) (16) of the criterion function Φk(w[n]) (12): 
   
 
 
 

where the symbol Φk′
* means the minimal value  (16) of the criterion function Φk′(w[n]) (12) defined on the 

elements xj[n] of the subset Ck′.  
 
The relation (22) can be justified by the remark that neglecting some feature vectors xj[n] results in neglecting 
some non-negative components ϕj(w[n]) (11) in the criterion function Φk(w[n]) (12).    
 

The property II (the monotonicity in respect to reducing of the feature space F[n]) 
 
The reduction of the feature space F[n] to F′[n′] by neglecting some features xi can not result in a decrease of the 
minimal value Φk(wk

*[n]) (16) of the criterion function Φk(w[n]) (12): 
   
 
 
 

where the symbol Φk′
* means the minimal value (16) of the criterion function Φk′(w[n]) (12) defined on the 

vectors  xj[n′] from the feature space F′[n′].  
 
The relation (23) results from the fact that the neglecting of some features xi is equivalent to imposing an 
additional constraints in the form of the condition wi = 0 on  the parameter space Rn.    
 
The monotonicity properties (22) and (23) constitute the basis for the proposed procedure of hidden linear 
dependencies extracting from data set. 
 
4. CPL criterion  functions Ψk(w) with feature costs 

Reduction of unimportant features xi in the cost sensitive manner can be supported by the modified CPL criterion  
function Ψk(w[n]) in the below form [4]:    
       
Ψk(w[n]) =  Φk(w[n])  + λ Σ γi φi(w[n])         

                                                                i∈I    
(24) 

 
where Φk(w[n]) is given by (12), λ is the feature cost level (λ ≥ 0), γi – is the cost of the feature xi (γi  > 0), I = 
{1,..., n}, and the cost  functions φi(w) are defined by the unit vectors ei[n] = [0,…,1,…,0]T:   
 
(∀i ∈ {1,…, n})                          -(ei[n]) Tw[n]        if   (ei[n])Tw[n] < 0 

                      φi(w[n])  =  |wi|  =                                                                             
                                                      (ei[n])Tw[n]        if   (ei[n])Tw[n]  ≥  0 

(25) 

 
The criterion function Ψk(w[n]) (24) is the convex and piecewise linear (CPL) as the sum of the CPL functions 
Φ(w[n]) (12) and λ γi φi(w[n]) (25). The optimal point wλ�[n] constitutes the minimal value of the criterion 
function Ψk(w[n]):   

 

(∃wλ�[n])  (∀w[n])   Ψk(w[n]) ≥  Ψk(wλ�[n])                                              (26) 

 
Each CPL cost function φi(w[n]) tends to reach the condition wi = 0 (24) through the minimization of the 
function Ψk(w[n]) (26) and to reducing the feature xi. The influence of the cost functions φi(w[n]) increases with 
the value of the parameter λ . The increase of the cost level λ can lead to reducing additional features xi. 
 
Each unit vector ei[n] defines the below hyperplane h0,i in the parameter space Rn: 
    
(∀i ∈ {1,2,…, n})          h0,I =  {w[n]: (ei[n])Tw[n] = 0}   (27) 

     (Ck′ ⊂  Ck) �  (Φk′
* ≤  Φk

*)  (22) 

     (F′[n′] ⊂  F[n]) �  (Φk′
* ≥ Φk

*)   (23) 
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The minimum point wλ�[n] (26) of the function Ψk(w[n]) (24) is situated in one of the vertices wk�[n]                  
(wλ�[n] = wk�[n]) defined by the equation of the below type (14):  
 
    Bk[n]T wk�[n]   =  δδδδ�[n]  =  [δ,…, δ, 0,…,0]T   (28) 

 
In this case, the columns of the matrix Bk[n] can be composed partly of some feature vectors xj[n] and partly of 
some unit vectors ei[n]. The vertex wk�[n] (15) is the point of intersection of hyperplanes hj  (13) defined by some 
feature vectors xj[n] and hyperplanes h0,i  (27) defined by unit vectors ei[n]. The minimum point  wλ�[n] (26) of 
the function Ψλ(w[n]) (24) is situated in one of such vertices wk�[n], which is the intersection point of n 
hyperplanes hj  (13)  and h0,i  (27).  
 
The features xi, which are linked to the unit vectors ei[n] in the optimal basis Bk

∗[n] (28) fulfil the below equation 
and can be reduced without changing of the minimal value Ψk(wλ�[n]) (26): 
 

 
 
 

where ei[n] = [0,…,0,1,0,…,0]T is the i-th unit vector, and wk�[n] = [wk1,.......,wkn].  
 
The number of the reduced features xi can be increased by an increasing the feature cost level λ in the criterion 
function Ψλ(w[n]) (24).  
 

5. Extracting of hidden linear dependencies 

The procedure of hidden linear dependencies extracting from data set C (1) can be based on the CPL criterion 
functions Φk(w[n]) (12) and Ψk(w[n]) (24)� The monotonicity properties (22) and (23) are particularly important 
in the proposed procedure.These monotonicity properties (22) and (23) are valid not only for the minimal value 
Φ k(wk

*[n]) (16) of the function Φk(w[n]) (12) but also for the minimal value Ψk(wλ

∗[n]) (26) of the function 
Ψk(w[n]) (24)�. 

The multistage procedure of extracting of hidden linear dependency is described by the below successive steps:  

 i.  Two small, positive parameters (margins of precision) τ1  and τ2 are defined  
     (τ2 ≥ τ2  > 0), the value k = 1 and the initial set Ck� = C (1) of  all the feature vectors xj[n] are fixed 
ii.   There is the computed minimal value Φk(wk

*[n]) (16) of the criterion function Φk(w[n]) (12). The  
     function Φk(w[n]) is defined on all the feature vectors xj[n] from the set Ck�. 
iii.  The minimal number of the feature vectors xj[n] is omitted from the set Ck� in order to reach the  
       condition Φk(wk

*[n]) ≤ τ1. Such vectors xj[n] are reduced which caused the smallest increase of the value   
      Φk(wk

*[n]) (16). The remaining feature vectors xj[n] form the k-th linearly dependent cluster Ck.   
iv.  The maximal number of the features xi is omitted from the feature space F[n], while preserving the condition 

Φk′(wk′[n′]) ≤ τ2 in the new feature subspace F′[n′] (F′[n′] ⊂  F[n]). The vector wk′[n′] constitute the 
minimum (26) of the function Ψk(w[n]) (24)�. The dimensionality of the feature vectors xj[n] from the cluster 
Ck is reduced from n to n′ by a successive increase of the feature cost level λ. (24).     

v.    The below linear relation between features xi from the feature subspace F′[n′] (xi ∈F′[n′]) is formed on   
       this basis 

   wλ,i(1)′xj,i(1)
 + ……..+ wλ,i(n′)′

 xj,i(n′) = δ   (30) 

 
where xj[n′] = [xj,i(1)

 ,..,xj,i(n′)]
T is the feature vector (xj[n′] ∈ F′[n′]) reduced during the previous stage, and                    

wλ′[n′] = [wλ,i(1)′,…, wλ,i(n′)′]
T  is the optimal vector (26) with all the components wλ,i′ different from zero (wλ,i′,0).   

vi.  The set Ck� is reduced by neglecting such feature vectors xj[n] which constitute linearly dependent cluster Ck. 
      If the set Ck� is not empty (Ck� ≠ ∅), then the value of the parameter k is increased by one (k → k +1 ) and the  
      next stage is started from the step ii.    
 
The  above procedure allows to extract K linearly dependent clusters Ck from the data set C (1). Each  cluster Ck 
is represented by K linear relations (30). As opposed to the K- means algorithm, the number K is not fixed at the 
beginning of this procedure. The number K of the clusters Ck reflects the structure of the data set C (1). Let us 
remark that the relation (30) allows to form n′ regression type models. Each component xj,i(k) can represent 
dependent variable (feature) xi(k) and the remaining n′ - 1 components xj,i(k′)  can represent dependent variables. 

    (ei[n])T wk�[n] = 0  �  wki = 0 � feature xi is reduced  (29) 
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Such regression type models have local properties. This means that each model represents feature vectors xj[n]  
from one particular cluster Ck.      
 
6. Concluding remarks 

The problem of extracting linearly dependent patterns from data sets is considered in the paper. The proposed 
approach is based on the minimization of two convex and piecewise linear (CPL) criterion functions Φk(w[n]) 
(12) and Ψk(w[n]) (24)�.     

Extraction of hidden, linearly dependent patterns is considered here as a problem of cluster analysis. The K-plans 
algorithm, similarly to the K-means algorithm has been proposed as one of the tools for solving this problem. In 
this approach each linearly dependent cluster Ck is represented by some central hyperplane H(wk[n],θk) (9)  

Alternative approach is based on what is described in Paragraph 5 as a sequence of the functions Φk(w[n]) (12) 
and Ψk(w[n]) (24)� minimizations. In this approach there is no need to fix the number K of clusters Ck 

beforehand. The extraction of linearly dependent clusters Ck is linked here to designing the regression type 
models (30). As a result, the data set C (1) is represented by the family of K linear models (30). Such 
representation allows to expose the internal linear structure hidden in the set C (1).    

The usefulness of the extracted linearly dependent patterns and models should be verified in many ways. In 
accordance with data mining or exploratory analysis standards, experts in the fields should have the final  
judgments concerning the extracted patterns.  

Bibliography 
[1]. Hand D., Smyt P., Mannila H.: Principles of Data Mining, MIT Press, Cambridge, MA 2001   
[2]. Duda O. R, Hart P. E., Stork D. G.: Pattern  Classification, J. Wiley, New York,  2001. 
[3]. Bobrowski L., Bezdek J. C., "C-means clustering with the L1 and L∞ norms", IEEE  Transactions on Systems   
       Man and Cybernetics, Vol. 21, No. 3,  pp. 545-554, 1991. 
[4]. Bobrowski L.: “CPL clustering with feature costs”, ICDM2008, Leipzig, Germany 
[5]. Bobrowski L.: "Design of piecewise linear classifiers from formal neurons by some basis exchange     
       technique" Pattern Recognition, 24(9), pp. 863-870, 1991 
[6]. Bobrowski L.: Eksploracja danych oparta na wypukłych i odcinkowo-liniowych funkcjach  
     kryterialnych (Data mining based on convex and piecewise linear (CPL) criterion   
     functions) (in Polish), Technical University Białystok, 2005      
 
 

730

I. Troch, F. Breitenecker, eds.      ISBN 978-3-901608-35-3


