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Abstract.
Modelling and simulation is an important tool in describing and analysing plant and soil interactions.
In this work we investigate the release of organic compounds (exudation) from roots with root hairs.
Exudation by root hairs is thought to increase the bioavailability of nutrients. Therefore they represent
a major factor for plant uptake of nutrients which have low mobility in soil, such as phosphorus. In this
paper we use the method of homogenisation to analyse the effect of root hair geometry on exudation
in the root hair zone. The resulting effective homogenised equations for the root hair zone are used
to develop a new exudation model. We solve the model with Comsol Multiphysics and investigate
exudation patterns in a hydroponic culture.

1 Introduction
Root hairs are lateral extensions of root epidermal cells and are known to be of great importance to plant phosphorus
nutrition. The average root hair length is 0.7 mm in maize and 1.3 mm in rape [1]. Root hair diameter ranges from
5-17 μm and the number of root hairs ranges from 2-100 per mm2 root surface area [2]. The formation of root
hairs is thought to be influenced by environmental conditions such as the soil phosphorus concentration [3] and by
plant genetics.

Modelling multiscale problems on increasingly complex 3-dimensional structures becomes more and more compu-
tationally challenging and even intractable. For such problems, the method of homogenisation [4] represents a tool
to transform the spatial heterogeneities into a tractable homogenous description. Effective equations can thus be
derived which still contain the relevant information about the geometry implicitly. The method of homogenisation
is particularly suitable for domains with a periodic microstructure as illustrated in figure 1. We consider a com-
posite material whose properties change rapidly compared to the macroscopic length scale L, which is in the order
of the root length (cm). On the microscale we consider individual root hairs surrounded by water. The different
properties of water and root hairs are illustrated in the right graph of figure 1 by periodic changes of colour between
a dark and light blue. The characteristic length scale of the heterogeneities l is given by the distance between the
root hairs (in the order of μm). If the ratio between the characteristic microscopic and macroscopic scales is small
i.e., ε = l

L << 1, it is possible to find effective macroscopic properties. This idea is illustrated in figure 1: In the
graph on the right side the heterogeneities in colour can be distinguished. If we look at it from far away, as in the
left graph, the average colour of the square is a medium blue.

When the characteristic macroscopic length scale is of order one, the microscale is equal to the period of hetero-
geneity [5]. Scaling the macroscopic space variable x with ε−1 defines a new microscopic space variable y = xε−1.
Since ε is small the scaling blows up the domain such that the microscopic heterogeneities can be distinguished
with respect to y. One of the fundamental assumptions of the theory of homogenisation is that the two variables x
and y can be treated as independent of each other when ε becomes small [4]. A famous example is the derivation
of the macroscopic Darcy law from the microscopic Navier-Stokes equations [6].

In this work, we introduce an effective equation for exudate transport in the root hair zone of roots which contains
the relevant information about the root hair geometry implicitly. Its derivation is based on the method of ho-
mogenisation. In a first step, we consider a root with root hairs in hydroponics culture, thereby avoiding diffusion
limitation due to soil properties. Our aim is to analyse the development of exudate patterns around a root with root
hairs for different morphological and physiological root properties.

2 Model description
We consider one single root with a root hair zone. Water flows top-down along the root. Within the water, nutrients
or exudates move by diffusion and convection. In the model the geometry is simplified in the following way: The
cylindrical root is unrolled yielding a rectangular domain with periodic boundary conditions on two sides, which
contains a smaller rectangular domain representing the root hair zone, see figure 2. This is justified as long as
the distance between the root hairs ε is small and the ratio between root hair length and root radius is not larger
than order one. In this case the distance between the tips of the root hairs is of order ε . The resulting domain
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Figure 1: The left square seen with respect to x coordinates has a medium blue colour. The microstructure (periodically
distributed dark blue circles on a lighter background) can be seen in the right square, blown up to y coordinates.

contains cylindrical root hairs orthogonal to the root, which have small radii and are close to each other. The
distance between the root hairs ε << 1 is the characteristic microscopic length scale and the root length L = O(1)
is the characteristic macroscopic length scale. Root and root hairs are surrounded by a fluid domain denoted as
Ωε . Furthermore the domain Ωε is 1-periodic in x1, thus the flow uε , the pressure pε and the concentration cε are
1-periodic in x1. The superscript ε denotes that the microscopic geometry is explicitly considered.

Figure 3 shows a cross section of the domain, illustrating the bounding surfaces: the root surface, the outer bound-
ary and the in- and outlet for water which are denoted as Γin and Γout .

For low Reynolds numbers the water flow velocity uε along the root is described with the Stokes equations.

−Δuε +∇pε = 0,

∇ ·uε = 0, (1)

with the flow uε and the pressure pε defined in the domain Ωε . We assume that water uptake by the root is
negligibly small compared to water flow along the root. Furthermore, we assume that the root hairs don’t take up
water. Thus, at the root surface, outer boundary and root hair surfaces, a no-flux condition is applied. At top (Γin)
and bottom (Γout ) of the domain a constant pressure is predetermined.

The nutrient concentration is described by the convection diffusion equation

∂
∂ t

cε −∇ · (D∇cε)+uε ·∇cε = 0, (2)

with cε defined on the domainΩε , the scalar constant diffusion coefficient D and the flow velocity uε from equation
(1). The limitation on D is reasonable because the diffusion coefficient in free water can assumed to be constant
[7]. The boundary conditions are chosen in the following way: There is no flux at the root surface and at the outer
boundary. At the inlet Γin a constant concentration is predetermined. At Γout solutes can leave the domain with the
water flow, thus at Γout the advective flux boundary condition is applied:

D∇cε ·n = 0. (3)

The vector n is the outer normal of Γin and Γout . Uptake or exudation only occurs at the root hair surface and is
described by

−D∇cε ·nε = ε f ε , (4)

where f ε describes the uptake or exudation behaviour at a single root hair and nε is the outer normal of the root
hairs.

When ε << 1 the geometry becomes complex and it is not possible to solve the above equations in reasonable time.
Thus we seek a homogenised solution for ε → 0. This means that we do not explicitly consider every single root
hair but the cumulative effect of all root hair surfaces. The macroscopic effective model for water flow and nutrient
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Figure 2: Geometry of a root with a root hair zone

concentration is derived in [8] using two-scale convergence. In order to give an idea how to obtain macroscopic
equations we present in section 3 the derivation of the effective equations for nutrient concentration using formal
asymptotic expansion.

When the root hairs are very close to each other they represent a large resistance to the water flow. In fact, [8]
shows that for small ε the flow vanishes in the root hair zone Ωa. In the fluid domain Ωb outside the root hair zone
the flow is given by the Stokes equations. Thus

−Δu0 +∇p0 = 0,

∇ ·u0 = 0, (5)

for x ∈Ωb and u0 = 0 for x ∈Ωa.

The concentration outside the root hair zone Ωb is then given by

∂
∂ t

cb −∇ · (D∇cb)+u0 ·∇cb = 0, (6)

with cb :Ωb → R.

Since the convection vanishes inside the root hair zone Ωa, [8] further shows that the concentration in this domain
is described by an effective diffusion equation with a reaction term describing the cumulative uptake or exudation
by the root hairs:

∂
∂ t

ca − 1

|Y |∇ · (D∇ca)+
1

|Y |
∫

S
f dS = 0, (7)

with ca : Ωa → R, where Y is the fluid domain in the unit cell, S is the root hair surface in the unit cell where the
uptake or exudation occurs. D is the effective diffusion tensor, which includes the cumulative effect of the root
hairs to the diffusion. We expect that the effective diffusion is slower than the one in free solution. D is given by

Di j =
∫

Y
δi jD+D

∂
∂yi

χ jdy. (8)
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Figure 3: Boundary surfaces of the domain Ω=Ωa ∪Ωb

The vector field χ is called first order corrector and describes the effect of the root hair geometry. It is sufficient to
describe the effects of the root hairs in two dimensions, because the diffusion along y3 is not effected. Therefore
the corrector χ3 = 0 (in direction x3); χ1 and χ2 are the solutions to the cell problem:

∇y · (∇yχk) = 0 k ∈ {1,2}, (9)

with χ : Y → R2, where Y ⊂ T2 and T2 is the unit torus in two dimensions. This represents the periodicity inside
the root hair zone Ωa, see figure 4. On the root hair surface S the boundary condition to the cell problem is given
by

(∇yχk + ek) ·n = 0 k ∈ {1,2}, (10)

where ek is the unit vector in direction k. Between the two domains Ωa and Ωb a continuous flux boundary
condition is applied. In the following a short derivation of the effective equations and the corresponding cell
problem is given.

3 Model derivation
We look for a solution of the solute concentration ca in the root hair zone. We derive the effective diffusion tensor
in a similar manner like in chapter 13 of [4], but in contrast a constant diffusion coefficient and boundaries within
the unit cells (e.g.: one root hair) are assumed.

We use the power series expansion

cε(x) = c0 (x,y)+ εc1 (x,y)+ ε2c2 (x,y)+ ..., (11)

where y = xε−1, y ∈ Y and x ∈Ωa ∩Ωε . We assume that c0, c1 and c2 all are 1-periodic in y, thus the unit cell can
be represented as an unit torus T2 with Y ⊂ T2. Furthermore x and y can be treated as independent of each other
when ε → 0, which is a fundamental assumption in homogenization theory.

For our formal derivation we neglect convection term in the equation for nutrient concentration cε

∂
∂ t

cε −∇ · (D∇cε) = 0, (12)

−D∇cε ·nε = ε f ε . (13)

We denote the relevant differential operators as

L ε := −∇ · (D∇) , (14)

Bε := −D∇. (15)
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Figure 4: The periodic two dimensional unit cell, Y

With y = xε−1 the partial derivatives become

∇→ ∇x +
1

ε
∇y, (16)

with ∇y = (∂y1
,∂y2

,0) and the differential operators can be rewritten in the form

L ε =
1

ε2
L0 +

1

ε
L1 +L2, (17)

Bε =
1

ε
B0 +B1, (18)

where

L0 := −∇y · (D∇y) , (19)

L1 := −∇y · (D∇x)−∇x · (D∇y) , (20)

L2 := −∇x · (D∇x) , (21)

B0 := −(D∇y) , (22)

B1 := −(D∇x) . (23)

Using the operators (19)-(23), equations (12) and (13) can be written in the following form:

∂
∂ t

cε +
1

ε2
L0cε +

1

ε
L1cε +L2cε = 0, (24)(

1

ε2
B0cε +

1

ε
B1cε

)
·n = f . (25)

Substituting (11) into (24) and (25), equating coefficients of equal powers of ε and disregarding all terms of oder
higher than 1 yields the following sequence of problems:

O
(
ε−2

)
L0c0 = 0 , (26)

O
(
ε−1

)
L0c1 = −L1c0 , (27)

O (1) L0c2 = −L1c1 −L2c0 − ∂
∂ t c0 , (28)

with the boundary conditions:

O
(
ε−2

)
B0c0 ·n = 0 , (29)

O
(
ε−1

)
B0c1 ·n = −B1c0 ·n , (30)

O (1) B0c2 ·n = −B1c1 ·n+ f . (31)

From the O(ε−2) equation (26) and periodicity in y we derive that c0 is only dependent on x, so that we have
c0 = c0(x).

When the diffusion coefficient D is scalar and constant the O(ε−1) equation (27) simplifies to

L0c1 = 0, (32)

1833

Proceedings MATHMOD 09 Vienna - Full Papers CD Volume



Figure 5: The first order corrector χ

where c1 satisfies the boundary condition (30). We choose separation of variables as ansatz to define c1 as

c1(x,y) = χ(y) ·∇xc0(x), (33)

where χ is called the first order corrector, which only depends on y and hence is 1-periodic. Inserting (33) into
equation (32) and into the corresponding boundary condition (30) yields the cell problem:

∇y · (∇yχk) = 0, (34)

(∇yχk + ek) ·n = 0 k ∈ {1,2}, (35)

χ3 = 0. (36)

The cell problem is stationary and independent of the constant diffusion coefficient D, but highly dependent on the
geometry of the boundaries. It can be easily solved numerically on a single cell, see figure 5.

Next the effective equations are obtained by analyzing the O(1) equation (28) with the boundary condition (31).
First equation (28) is integrated over the fluid domain Y on the unit torus T2. By using the divergence theorem and
inserting the boundary condition, the left hand side of the equation becomes:∫

Y
L0c2dy = −

∫
Y
∇y · (D∇yc2)dy = −

∫
S
(D∇yc2) ·ndS

=
∫

S
B0c2 ·ndS =

∫
S

f dS−
∫

S
B1c1 ·ndS. (37)

As a result the integral of the O(1) equation (28) over Y becomes:

−
∫

Y
L2c0dy−

∫
Y

L1c1dy = |Y | ∂
∂ t

c0 +
∫

S
f dS−

∫
S
B1c1 ·ndS. (38)

The first integrand is already an expression in the slow variable x:

−
∫

Y
L2c0dy = |Y |∇x · (D∇xc0) = ∇x ·

∫
Y

Ddy∇xc0. (39)

The last expression is according to the form needed for the effective diffusion coefficient. The second integral
yields

−
∫

Y
L1c1dy =

∫
Y
(∇y · (D∇x)+∇x · (D∇y))(χ ·∇xc0)dy =∫

S
(D∇x(χ ·∇xc0)) ·ndS +∇x ·D

∫
Y
(∇yχ)T dy∇xc0 =

−
∫

S
B1c1 ·ndS +∇x ·D

∫
Y
(∇yχ)T dy∇xc0. (40)
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Figure 6: The static water flow u0

Inserting the two integrals into equation (38) gives

1

|Y |∇x · (
∫

Y
DI +D(∇yχ)T dy︸ ︷︷ ︸

D

∇xc0) =
∂
∂ t

c0 +
1

|Y |
∫

S
f dS, (41)

which is effective diffusion equation (7) with the effective diffusion tensor D given in equation (8).

4 Results
The model is implemented in Comsol Multiphysics. First the cell problem is solved in two dimensions as described
in the last section, see figure 4, yielding χ as presented in figure 5. We assume an interhair distance of 1e-4 cm and
root hair radius of 4e-5 cm. With equation (8) the effective diffusion tensor is calculated from the constant scalar
diffusion coefficient D which is equal to 1e-5 cm2 s−1. Since χ3 = 0 the numerical values of the effective diffusion
tensor are given by

D ≈
⎛⎝ 3.2209 ·10−6 −2.3238 ·10−14 0

−2.3238 ·10−14 3.2209 ·10−6 0

0 0 10−5

⎞⎠ (42)

The homogenised problem is periodic in x1. It is sufficient to consider one cross section (x3,x2), see figure 3. The
stationary flow is calculated in this geometry with the domain size of 0.4 cm x 5 cm with a root hair zone of 0.15
cm x 2.5 cm. At the inlet and outlet, constant pressures of 2 and 0 bayres, respectively, are prescribed, resulting in
a flow with maximum velocity of approximately 5×10−3 cm s−1, see figure 6.

With the static flow field u0, the convection diffusion equation can be solved on the whole domain, with the
effective diffusion coefficient D on Ωa and the scalar diffusion coefficient D on Ωb.

The boundary conditions for concentration are set to no-flux on the left and right boundary, at the in- and outlet
an advective flux boundary condition is predetermined. Between the domains Ωa and Ωb a continuous flux is
assumed.

We calculate the exudation of the root hairs zone and assume that the exudation of the root hairs is constant per root
hair surface area and time. The resulting concentration of the exudate is given in figure 7 (a). Figure 7 (b) shows
how the exudate moves by convection along the flow field after leaving the root hair zone by diffusion. In figure
7 (c) the diffusion of exudate is illustrated. Diffusion mainly occurs between the domains Ωa and Ωb because the
exudate diffuses from the high concentration in the root hair zone to the lower concentration in the solution.

This example shall demonstrate how the proposed model can be applied to experimental settings.
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Figure 7: (a) Exudate concentration (b) Convective flux of exudates (c) Diffusive flux of exudates
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