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Abstract. A damage model for geomaterials and concrete is proposed. This model takes into 
account the anisotropic character induced by the degradation of material. The law of behavior 
obtained by differentiation of the free energy expresses the unilateral effect observed in traction-
compression as well as the residual strains caused by the damage. 

The approach suggested requires the identification of a reduced number of parameters having a 
clear physical significance. An application to the cases of the uniaxial traction-compression loading 
shows a good adequacy with the experimental observations. 

1 Introduction 
Geomaterials and concretes are regarded as isotropic and heterogeneous materials before any mechanical loading 
at a mesoscopic scale. The application of a mechanical loading allows onset of defects whose direction of 
propagation depends on the local stress field. Before any loading, these materials are characterized by a 
significant density of microscopic cracks that propagate in a direction normal to the tension but tend to close in 
the case of compression [1,2] with possibility of frictional slip on the lips of discontinuities. 

The complete crack closure causes a recovering of the material rigidity. This phenomenon is called unilateral 
effect [3]. In addition one observes during a simple mechanical test that the cancellation of the loading leads to a 
more or less important irreversible strain. These effects are caused by frictions, which appear at the crack 
closure. 

A mechanical modeling approach of these materials must describe the behaviors and associated phenomena 
described below. The damage mechanics constitutes a theoretical tool adapted to describe the complex 
mechanisms associated with damage and rupture under mechanical loading. Thus the formulation of the model 
must take account of the principal characteristics described which are summarized below: 

(1)  degradation of the properties of material by creation of defects in the structure 
(2)  an anisotropic behavior as a consequence of damage 
(3)  unilateral effect at the crack closure in the case of the application of compressive stresses. 
(4)  dissymmetry in behavior between tension and compression  
(5)  occurrence of irreversible deformation after total unloading. 

Many research treats damage phenomenon in concretes and geomaterials. The production of several models is 
mainly imposed by the complexity and the variety of the behaviors observed. According to the type and the level 
of imposed loading, the response can evolve from a linear elastic behavior to a nonlinear behavior with 
development of a damage depending on the structure and mechanical properties as well as loading field. Certain 
approaches privilege the simplicity of the formulation by using a scalar parameter [4] to describe the density of 
the defects induced by the loading in place of a more realistic approach that would use tensorial formulation to 
describe a system of defects strongly influenced by the local stress fields. Some models take into account the 
unilateral effect (3) [1, 2, 5, 6, 7] and the dissymmetry between tension and compression (4). Irreversible 
deformation (5) is rarely included in the formulation of the behavior laws [1, 2, 3]. 

Badel et al. [1] make a thorough analysis of the various models and note many inaccuracies in the formulations 
suggested. In addition some models [2] are applicable only for low mechanical loading and cannot reproduce 
high damage values. Their implementation in a numerical code leads to some problems in convergence. 

The present model takes accounts of the various characteristics of behavior quoted above. Our approach is based 
on the formulation of a potential of free energy as a scalar function of the strain and damage tensors. This choice 
avoids singularity in the expression of the stress tensor obtained by derivation of the potential of free energy [1]. 
State variables are reduced to two rank symmetric tensorial variables 9  (strain variable) and D  (damage 
variable). 
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The model takes also account of dissymmetry between traction and compression and contains a term related to 
the residual effects. 

In last part we propose an application to the case of a tensile and then of a compression tests. A comparison with 
experimental results will be carried out to test the acuity of the model. 

2 - Formulation 

2.1 Micromechanical description of the damage 
We consider a volume of sufficiently large size compared to heterogeneities. The material is elastic linear and 
isotropic before loading. Let us note Sn the cross-section of elementary volume, and n its normal unit vector. Due 
to the existence of cracks surfaces and stress concentration, the net cross-sectional area of the element (effective 
resistant area) is Sn

eff instead of Sn (Sn
eff 0 Sn ) . The surface density of discontinuities on the quoted cross-area 

is given by: 

Dn �
Sn 	 Sn

eff

Sn

  (1) 

 

Figure 1. Representative volume element 

Defects of random orientations and size are described by several systems of parallels microcracks. A two rank 
symmetric tensorial variable D  is thus chosen indicating orientation of microcracks sets as well as generation 
and growth of decohesion surfaces: 

 
ni i i

i
D� :�D n n  (2) 

where ni describes the orientation of the i-th set of parallel crack-like defects. 

As a symmetric two rank tensor, D  can be represented in its principal axes and corresponding principal 
directions nk, k = 1, 2, 3 as follows: 

 

3

1
k k k

k
D

�

� :�D n n  (3) 

So, any system of cracks-sets is equivalent to three orthogonal sets of parallel cracks [2]. 

2.2 Thermodynamic free energy 
The microstructural change in materials of inelastic strain and damage is induced by the development of 
microscopic cavities and other defects [8]. We postulate that the Helmotz free energy ;  is a function of strain �  
and damage D : 

 ( , ); ;� � D  (4) 

The function ( , ); � D  is restrained to depend linearly on D , corresponding to the hypothesis of non-
interacting cracks and is at most quadratic in 9  assuming thus linear elasticity for fixed D . According to these 
assumptions, a general form of the function ( , ); � D  is proposed as a Taylor series [3, 8, 9]: 

n  n  n  
S n Sn

eff
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(0, ) (0, )( , ) (0, ) : : :�; � ;; ;
� �

� � �
D D� D D � � �

� �
 (5) 

This expression can be written in the form: 

 
0( , ) r e; ; ; ;� � �� D  (6) 

The terms; 0, ;e , ; r respectively, represents the initial, residual and elastic recoverable free energy of the 
material. The first term ; 0has no influence in the law of state and appears only in the dissipation. 

The material is considered isotropic in the absence of damage and the anisotropy appears when the mechanical 
loading generates oriented defects. Thus for undamaged material the elastic recoverable free energy can be 
expressed as follows: 

 5 62
0 0

3( , ) :
2

e D DG K Tr; � � �� D 0 � � �  (7) 

where G0 and K0 are the shear and bulk modulus of the undamaged material related to Lame coefficients by the 
following relation: 

0 0G 3�  and 0 0
0

3 2
3

K 8 3�
�  

D�  is the deviatoric strain tensor defined by: 

 
1 ( )
3

D Tr� 	� � � 1  (8) 

We assume that the occurrence of damage affects the volume change and the deviatoric part of the strain tensor. 
Defects in material are supposed to be accompanied by reduction in effective volume of damaged unit element 
compared with a virgin one and with reduction in effective surface area that is associated with the elastic 
deviatoric strain. 

According to these assumptions Papa et al. [10] proposed the following expression for the potential of free 
energy: 

 5 6
1 1

22 2
0 0

3( , ) ( ) : : ( ) : Tr (1 )
2

e D DG K d;
� � � �

� � 	 	 � 	$ % $ %
� � � �

� D 0 1 D � 1 D � �  (9)
 

where d is the volumetric damage expressed as the average of the eigenvalues of damage tensor: 

 Tr( )d *� D  (10) 

The residual term ; r  of the expression (6) is written as a linear function of strain and damage tensors [9]: 

 Tr( . )r; <� 	 D �  (11) 
Onset and propagation of defects in material is assumed to be associated with positive strain field [11,12, 13, 
14]. We take into account this last assumption by affecting the positive part of volumetric strain by a coefficient 
function of the state damage. We assume that the negative part is not concerned by the damage evolution. 

Badel et al. [1] pointed out the difficulty to represent the response of the material in compression loading with a 
potential of free energy given by (9). The axial stress increases with axial strain and no maximum value can be 
reached. This observation leads us to affect the damage energy due to the deviatoric part of the strain field by a 
coefficient =  (1 10)=0 0 . This allows to accelerate the decrease of this part of free energy. 

The final form of the Helmotz strain energy we propose is given by the expression: 
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5 6 5 6� �

1 1
2 2

0

2
0

( , ) ( ) : : ( ) :

3        (Tr ) (1 Tr ) ( Tr ) Tr( . )
2

D DG

K

; = =

* <� �

� � � �
� 	 	 �$ % $ %

� � � �

	 	 	 	

� D 1 D � 1 D �

� D � D �
 (12) 

where (x)�  is formed from positive eigenvalues of tensor ( )x : 

( ) ( )i i ix� �� :x e e  and ( ) ( ,0)i ix Sup x� � . 

= , * and < are material coefficients. 
This form of potential of free energy is equivalent to that classically proposed by several theoretical models [3, 
8]: 

 

2
20

0 1

2 2
2 3 4

(Tr )( , ) Tr( . ) Tr (Tr )
2 3

Tr Tr( ) (Tr )(Tr . ) Tr(( ) . )

D D KG; =

= = =

� � �

� � �

�� D � � D �

D � � � D � D
 (13) 

Derivation of equation (12) with respect to �  gives stress-strain relationship: 

 

1/ 2 1/ 2
0

0

( , ) 2 ( ) . .( )

[(Tr ) (1 Tr ) ( Tr ) ]
3

G

K

; = =

* <� �

�
� � 	 	 �

�

	 	 	 	

� D� 1 D � 1 D
�

� D � 1 D
  (14) 

We check that when �� 0 (unloading stage) then <� 	� D . This term reflects the irreversibility due to the 
damage occurred during loading. 

Derivation of equation (13) with respect to D  yields to the damage driving forces: 

 2
0 0

( , ) 3. (Tr )
2

D DG K; = * <�

�
� 	 � � �

�
� DY � � � 1 �
D

 (15) 

We can distinguish in (15) the damage driving forces linked to the residual stress term of the strain energy: 

 1 1 1[( ) ( ) ]< < � 	
� 	� � � � �Y � � � Y Y  (16) 

and the damage driving forces linked to the reversible part of free energy: 

 2
2 0 0

3. (Tr )
2

D DG K= * �� �Y � � � 1  (17) 

It is assumed that the evolution of the damage D  is mainly governed by the positive part of the damage driving 
force 1

�Y , which depends on the tensile (positive) strain tensor ( )�� [1, 2, 12]. 

The elastic domain is defined by a yield function 0f 0 written in the Y -space. Concerning the form of the 

damage threshold for our class of material, the positive part of damage force 1
�Y is assumed to play a 

determining role. Then we assume that the threshold function is defined as follows [2, 13]: 

 2
1

1( , ) Tr[( ) ] ( ) 0
2

f K�
�� 	 0Y D � D  (18) 

( )K D  is the damage threshold depending on the damage tensor D : 

 ( ) Tr[( ) ]K a b>	� 	 �D 1 D  (19) 
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This function depends on three additional parameters a, b and >. Threshold function is not built on physical 
argument but allows obtaining realistic results regarding to concrete and geomaterials behavior observed in some 
experimental tests [14, 15]. 

The damage evolution is expressed using the normality rule: 

 1

1

( , )f �

�

�
� ?

�
Y DD
Y

� �  (20) 

?� is the damage multiplier which can be determined from consistency equation 1( , ) 0f � �Y D� : 

 
1

1

1

:

:

f

f f

�
�

�

�
�

? �
� �
� �

Y
Y

D Y

�
�  (21) 

The loading-unloading conditions are the so-called Kuhn-Tucker conditions: 

 0, ( ) 0, ( ) 0f f? @ 0 ? �Y Y� �  (22) 

3 Model prediction in uniaxial loading of tension and compression. 

3.1 Uniaxial simple tension test 
The model proposed can be developed analytically and explicitly in the uniaxial loading like tension test. Let be 

1e  the direction of the tension loading. The stress, strain and damage tensor are given below: 

 
1 1 1

2

2

0 0 0 0 0 0
0 0 0 ,  0 0 ,  0 0 0
0 0 0 0 0 0 0 0

D/ 9
9

9

� � � � � �
� � � � � �� � �� � � � � �
� � � � � �
� � � � � �

� � D  (23) 

It is assumed here that the damage evolves only in the direction of positive strain associated to 19 . In this case 

� and D have the same principal directions. 

The damage elastic behavior is obtained from (14): 

 

0 0
1 0 0 1 1

0 0

0 0
0 1 2 1

0

0 0
2 0 2 1 1 2 1

(4 2 ) 3[( 2 )[1 ]
3( 2 )

2( ) 32 [1 ]
3

3 22 ( ) ( 2 )(1 ) 0
3 3

D

D D

D

= * 3 *8/ 8 3 9
8 3

= * 3 *88 9 <
8
8 3/ 3 9 9 9 9 *

� �� � � 	 �! �!
! 	 	

	 	"
!
! �

� 	 � � 	 �!
#

 (24) 

The second expression of (24) gives the relation between axial and transversal strain: 

 0 0 1
2 1 1 1

0 1

3 (1 ) ( )
3 (1 )

D D
D

A * A9 9 A 9
* A
	 �

� 	 � 	
	 �

 (25) 

Analyze of expressions (25) shows that 1( )DA decreases as damage evolves (Fig. 2). This reflects the fact that 
the axial tensile strain evolves faster than the transverse one. This property of the model is consistent with 
experimental results in tension tests. 
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Figure 2. Evolution of Poisson ratio A(D) vs damage D1. 

Concerning threshold function in tension, equations (18) and (19) leads to the following equation: 

 1
1

12[ (2 ) ] 0
(1 )

a b
D >9 	 � � 0

	
 (26) 

At the onset of damage ( 1( , ) 0,f � � �Y D D 0 ), the strain threshold 109 is given by: 

 10 2(3 )a b9 � �  (27) 

Beyond of the value 109 , the damage parameter is positive (D1>0) and the expression (26) yields to: 

 

1/

1
1 10

21
2

aD
a

>

9 9

� �
� 	 $ %

	 �� �
 (28) 

We can easily verify that if 1 1 1D9 ��B � , which is the limit value of damage parameter. As a synthesis 
of the uniaxial loading simulation we can conclude that the damage model depends on 6 
parameters , , , , ,a b= * < > . The parameters a and b are linked by the relation (27). 

Figure 3. Simulation of stress-strain test in tension loading 

1( )DA

0

0,1

0,2

0,3

0 0,2 0,4 0,6 0,8 1 D1
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Figure 4 . Numerical test of unloading phase during tension 

3.2 Uniaxial compression test 

We choose 1e as the direction of the compression loading, then strain, stress and damage are now of the form: 

1 1

2

2

0 0 0 0 0 0 0
0 0 0 ,  0 0 ,  0 0
0 0 0 0 0 0 0

D
D

/ 9
9

9

� � � � � �
� � � � � �� � �� � � � � �
� � � � � �
� � � � � �

� e D  

The damage elastic behavior is obtained from (14): 

 
1 0 0 1 0 2

0 0
2 0 0 2 0 1

( 2 ) 2 ( )

[2( ) 2 ] ( 2 ) 0
3 3

D

D D D

/ 8 3 9 8 9
3 3/ 8 3 = 9 8 = 9 <

� � ��
!
"

� � 	 � � 	 �!#

 (29) 

The second expression of (29) gives the relation between axial and transversal strain: 

 0 0
2 1

0 0 0 0 0 0

3 2 3
6( ) 2 6( ) 2

D D
D D

8 3 = <9 9
8 3 3 = 8 3 3 =

�
� 	 �

� 	 � 	
 (30) 

Equations (18) and (19) leads to the expression of the threshold function: 

 2
2[ (1 ) ] 0

(1 )
a b

D >9 	 � � 0
	

 (31) 

The initial value of the strain at the beginning of the damage process is then obtained 
for 1( , ) 0 and f � � �Y D D 0 . In the transverse direction 2e the strain 209 is given by: 

 20 3a b9 � �  (32) 

and 
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 2 20
2

12 [ 1]
(1 )

a
D >9 9� � 	

	
 (33) 

Then the expression of the damage 2D : 

 1/
2

2 20

21 [ ]
2

aD
a

>

9 9
� 	

	 �
 (34) 

We can obviously verify that if 2 2 200D 9 9� B �  and if 2 21,  D 9� �� . 

The compression stress-strain diagram resulting from a simulated test compression is shown in figure 5. We note 
in figure 6 that the Poisson’s ratio remains constant in the undamaged elastic phase and increases when damage 
evolves in the second phase. 

Figure 5 Stress-strain diagram simulation in compression 

 
Figure 6 Poisson’s ratio evolution 
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The parameters of the model used in this simulation are obtained from experimental tests on repair mortar [16]: 

24 GpaE � , 0.2A � , 7.25 Mpa< � , 3.7> � , 42.9 10a 	� � , 46.7 10b 	� 	 � , 5= � , * �1.76 

 

3.3 Dissymmetry in tension and compression 
In the elastic phase we can demonstrate analytically that the model reflects the asymmetry between tension and 
compression by comparison between 10( )t9 the elastic tension strain threshold and 10( )c9  the elastic 
compression strain threshold.  

Equations (26) and (36) allow to write: 

 10 20 10( ) 2( ) 2( )t c c9 9 A 9� � 	  (35) 

The ratio between strain in tension 10( )t9 and compression strain 10( )c9 is about: 

10

10

( ) 2 0.28
( )

t

c

9 A
9

� 	 � 	  

For 0.2A �  we have: 10

10

( ) 0.28
( )

t

c

9
9

�  

 

 
The asymmetry in tension-compression is clearly observable on figure 3 and 5. The ratio between compression 
and tension maximum stress is about 6.2. Experimental tests in tension and compression give a ratio value 
between 8 and 10 for repair mortar material simulated here. Therefore, our approach is acceptable at this stage of 
model development. 

 

3.4 Initial elastic domain  
The threshold function defined in (18) leads to the following general form: 

 2( ) : ( ) ( )a b� � 0 �� �  for �D 0  (36) 

Using the eigenvalues of the strain tensor � in (36) one obtains in the plane strain 3( 0)9 � the following 
relation: 

 2 2 2
1 2 ( )a b9 9� 0 �  (37) 

10( )t9  
10( )c9  

19  

1/  

10( )c/  

10( )t/  

Figure 7. Asymmetric response in tension and compression 
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The representation of the relation (37) is illustrated in figure 8.  

 
Figure 8. Representation of undamaged domain in plane strain  03 �9  

The undamaged domain is an open domain in the negative strain direction. 

4 Conclusions 
A model based on damage theory has been presented in this paper. The proposed model uses a tensorial variable 
to describe anisotropic damage. The model has been proved to be effective under several respects in describing 
the mechanical behavior of concrete and geomaterials under static loading, i.e.: 

� occurrence of irreversible strain after total unloading; 

� decreasing of young modulus with development of damage; 

� dissymmetry in behavior between tension and compression 

� unilateral effect as consequences of crack closure 

This model requires the identification of a set of seven parameters easily extracted from tension-compression 
test. 

A general good agreement is obtained between the experimental tension compression tests and theoretical 
simulations. More Developments are needed concerning the response of this model in the case of general loading 
paths. 
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