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Abstract. For industrial applications a lot of process know-how and a good understanding of the 
dynamic behavior of all the individual components and overall mechanical systems are of high 
importance. Usually, the systems parameters describing the relevant behavior have been deter-
mined through extensive technical experiments for using the results in complex simulation models. 
In many cases a more flexible and efficient method is to set up appropriate mathematical models 
and to extract the required parameters from them.  
In this paper a model for a special hydrodynamic bearing will be presented, which has been devel-
oped for industrial applications. Furthermore, the present paper will show some advantages of im-
plementing separate modules for the physical characteristics of a hydrodynamic bearing. Under 
certain conditions it is possible to calculate the deformation of the mechanical components and the 
pressure of the lubricant within the bearings gap independently. Following with a procedure for 
the automatically creation of the Finite Element models according to the given guidelines and the 
method to reproduce surface deformations by influence matrices. Finally,  the paper describes the 
identification of the dynamic behavior of a hydrodynamic bearing by numerically solving of the 
equilibrium-state between the pressure distribution and the mechanical deformations. 

1 Introduction 
Hydrodynamic bearings for industrial applications usually are highly dynamically loaded, like a roll bearing 
assembly in rolling mills in steel industry. Such applications require high positioning accuracy but are a domi-
nant compliance in mechanical systems. Therefore, a good understanding of the dynamic behavior of such bear-
ings becomes more and more important. 

At high pressures in the lubricant and thin film thicknesses, the mechanical bearing components are significantly 
elastically deformed (shown in Figure 2) what leads to a change of the pressure distribution and the bearing 
dynamic. This nonlinear coupling is called Elasto-Hydro-Dynamic (EHD).  

elastic deformation 
at pressure range

bearing outer ring 

trunnion with
bearing inner ring

Figure 1. Concept of a deformed hydrodynamic bearing. 

This behavior has been investigated carefully and an EHD-bearing model has been set up. The model was used 
for the numerical determination of the dynamic model parameters at a defined operating point for being able to 
use the results in complex simulation models. 
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2 Complete EHD-model of a hydrodynamic bearing 
A structure of the developed EHD-bearing model was set up, which allows an independent calculation of the 
deformations of the mechanical components and the pressure of the lubricant inside the bearing gap. As it is 
shown in Figure 2, the deformation of the contact surface with oil for both bearing rings is included, as well as 
the elastic deflection of the shaft, in particular for the trunnion.  

deformation of the inner ring 
due to unit pressure load

elastic deflection of 
the shaft

deformation of the outer ring 
due to unit pressure load

hydrodynamic 
bearing model

Figure 2. Structure of EHD-bearing with included deformation of the mechanical components. 

With separate Finite Element models for the inner ring plus trunnion and the outer ring with the housing the 
deformation of the contact surfaces as reaction on the lubricant pressure will be calculated. The pressure distribu-
tion of the lubricant depends on the operating point and certainly on the size and geometry of the lubricant film 
what again depends on the surface deformation and has an influence on the load capacity.   
As the pressure distribution can not be calculated explicitly for a general bearing geometry, iterative numerical 
methods have been used. In each iteration step, the complete deformation must be determined what causes very 
long computing times if the Finite Element model must be solved each time.  
To avoid this, the method of influence functions has been used where the deformations have to be calculated 
only once. Herewith, a quick and efficient determination of the exact deformation of the bearing due to the pres-
sure distribution can be done. This drastically reduces the overall computing times. Figure 3 shows such an un-
couple program sequence.  
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Figure 3. Uncoupled program sequence for calculation of the bearing gap. 
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3 Finite Element model for the calculation of the elastic deformations  
A necessary requirement for the permissibility of influence functions describing the elastic deformations is the 
linear relationship between the pressure in the lubricant film and the resulting deformations of the mechanical 
components.  

The next step for this approach is the splitting of the contact surface into a grid. The influence functions will be 
generated by applying unit pressure loads on an element of the bearings surface and analysing the resulting de-
formations – see Figure 4. In our case Finite Element models have been used for these calculations, where the 
unit pressure loads were applied separately on each surface element of the model mesh. Because of the above 
mentioned linear relationship, the total deformation - as the result of the total pressure distribution – easily can 
be calculated by scaling and summing up of the results of the single unit pressure loads.  

load case 3

resulting radial deformation  
of all nodes on the surface 

for load case 3

loading of one surface element with 
single unit pressure

Figure 4. Single unit pressure on a surface element of the inner ring and the resulting radial deformations 

The trunnion and the outer ring of the hydro-dynamic bearing are only coupled via the fluid in the bearings gap, 
what allows the use of independent mechanical models for both components. A special aim of the corresponding 
research project also was to automate the calculation of the influence matrices (influence functions evaluated at 
the surface elements of the model mesh) by an automatic generation of the input files for the Finite Element 
calculations and an automatic evaluation of the final results. 

For our application the trunnion is a rotationally symmetrical part. Hence it can be described by a very simple 
geometry what enables a fully automatically generation of the Finite Element model including the nodes of the 
mesh. This again simplifies the evaluation of the results, because the node definitions, which are needed for the 
determination of the surface deformations, are known a priori. A second advantage of this rotationally symmetri-
cal model was that the specific load cases only have to be applied on one row of elements with the same angular 
position on the cylindrical surface. 

The outer ring of the bearing including the housing has been modeled to allow an implementation of realistic 
boundary conditions which have significant influence on the deformation of the inner surface of the ring. For this 
complex 3D model an automatic generation of the nodes of the mesh was no longer possible because the simpli-
fications and advantages of the trunnion model were no longer valid. Thus, the existing 3D Finite Element mod-
els for the outer ring and the housing have been used for the generation of the input files including all the bound-
ary conditions and forces. 

4 Pressure distribution of the transient deformed bearing 

4.1 Conditions for modelling 
Analysing the bearing gap it is supposed that the bearing is void of any hydrostatic influence. For the determina-
tion of the dynamic influences at the operating point correct assumptions have to be made for exactly this point. 
Not only the ideal position of the trunnion had to be modelled, but also an instable one. The model also calcu-
lates and considers the adjustment of the inner ring in relation to the outer ring in axial direction and only on the 
vertical plane. 
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In order to investigate the reaction of the bearing an instationary view is necessary. Furthermore, the existence of 
a finite bearing is assumed. As a result the simplified assumtions of a very narrow relation b/d < 0.25 as well as 
of a very wide bearing b/d > 4 does not apply [1]. Also a circle-cylindric elementary form of an inner and outer 
ring is assumed. The surface of such looking bearings is bare of holes and milled slots. Another point of analysis 
concerns the consideration of the bearings’ reaction on the turning trunnion in the fixed housing.  

The lubricant is assumed being an incompressible Newtonian fluid with constant viscosity. The fluid flow in the 
gap is assumed as laminar. This state is to be calculated by means of the Reynolds´ number. The absolute clear-
ance ratio is defined as the difference of the diameter between the outer and the inner ring with zs ddS −= [1]. 
Furthermore, the inertial force of the lubricant is neglected in favor of the viscosity as well as the gravitation 
force and buoyancy. Due to the insignificant height of the bearing gap in relation to the other overall geometry 
the pressure in the direction of the bearing gap is assumed being constant. The model should enable the analysis 
of translatory but not rotatory vibrations of the trunnion. Therefore, the second derivation of the lubricants veloc-
ity in the direction of the bearing gap is significantly higher than in axial direction. An important assumption 
concerns the adhesion on the ideale plane surface. 

4.2 Geometry of bearing gap 
Following – already above mentioned – parameters are taken into account in order to calculate the resulting 
geometry of the bearing gap: 

• Dislocation of rigid bodies of the inner and outer ring 
• Inclination of the trunnion on the vertical plane 
• Deflection of the trunnion  
• Deformation in radial direction of the inner and outer ring´s surfaces which have contact with lubricants 

The dislocation of the rigid bodies in particular of the inner and outer rings have been defined by the excentricity 
of the bearing. This excentricity is much smaller than the radii of the both rings (E<<R and E<<r). Under this 
prerequisite the radial height of the bearing gap can be simplified as following: 

)cos()( locallocal erRh ϕϕ +−≅  (1) 

For the local angle of the bearing gap does apply: 

( )πϕϕϕ +−= mingloballocal  (2) 
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Figure 5. Geometry and angle of bearing gap. 

The bearings gap will also change due to the vertical adjustment which contains the deflection and a superposed 
inclination of the trunnion. For this the deflection will be calculated with the FE model and will be used later 
with the influence functions. To identify the resulting displacement of the axis the calculated deflection δdeflection

will consequently superpose with the inclination ϕslant as well as a correction factor ϕcorrection. 

( ) ( ) deflectioncorrectionslantzz δϕϕδ −+= sin  (3) 
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Thereby the correction angle includes possible inclination of the housing. To obtain the absolute adjustment of 
all points of the center line the effect of displacement of the axis δ(Z) consolidates with the radial displacement of 
trunnion with the value e in direction of ϕmin must be taken into account. 

( ) ( ) ( ) �
�
��

�
� −−+= min

22

2
5cos2 ϕπδδ zezezeslant  (4) 

This adjustment and the change of the angle for the minimum bearing gap reads as 
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and is shown in Figure 6. Regarding these effects the height of the bearing gap of equation (1) must expand. 

( )πηϕϕ ++−+−= mincos globalslanterRh  (6) 
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Figure 6. Adjustment of axis according by deflection and inclination of the trunnion. 

4.3 Using Reynold’s differential equation for model of bearing gap  
To calculate the bearings gap the Reynold differential equation will be used. By applying the Finite-Difference 
Method these differential equations can be resolved. Fundamental equations of the calculation for the distribu-
tion of pressure in the bearing gap are the dimensionless Reynold differential equation for the unsteady state. 
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Following dimensionless parameters are used in equation (7): 

2
B
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R
R
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h

H V
v =Δ=Σ

Δ
=  (8) 

For this dimensionless parameters the radius R and width B of the bearing are required as well as the height of 
bearing gap hv. This height contains the geometry of the bearing gap, described in the previous chapter and the 
radial elastic deformation of mechanical components of the bearing vr, also calculated with the finite element 
model and again included later with the influence functions in the ongoing calculation. 

( ) ( ) ( )zvzhzh localrlocallocalV ,,, ϕϕϕ +=  (9) 

Next step is the implementation of the dimensionless coefficient of pressure Π . With this coefficient a trans-
formation with Sommerfeld will be executed Π . 

ηωB
p

2Ψ=Π (10) 

2
3

VHΠ=Π (11) 
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With these parameters the differential equation for pressure can be set up. 
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For the boundary conditions of these differential equations applies the zero value of the borders. This means the 
border of the beginning 1ϕϕ =  and end 0ϕϕ =  of the distribution of pressure, as well as both ends of the bear-
ing 0=Z  and BZ = . 

( ) 0,1 =Π Zϕ     ( ) 0,0 =Π Zϕ     ( ) 00, ==Π Zϕ     ( ) 0, ==Π BZϕ         0
0

=
∂

Π∂

=ϕϕϕlocal
 (13) 

To dissolve the differential equations for pressure the bearing gap has been discretised in angular and in axial 
direction to form a rectangular grid with factors of grid ΔZ and Δϕ. The pressure on every point of grid is ascer-
tained approximately numerically replacing the derivation via differential quotient. 
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Hence, it is possible to form the equation for the pressure on every point of grid with reference to the pressure of 
the neighboring points of the grid. 
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If some point outside the area of pressure is needed, this value is set as zero. 

Πi,j Πi+1,jΠi-1,j

Πi,j+1

Πi,j-1

Πi,j Πi+1,jΠi-1,j

Πi,j+1

Πi,j-1

Figure 6. Differential equation of each point of grid at pressure area. 
(pressure area illustrate in yellow colour) 

All equations for the points of the grid inside the area of pressure can be summarised into the following matrix 
form. 

β
��

=Π⋅A (16) 

The equation above with only few items in the matrix A can be solved numerically by the conjugate gradients 
squared method. Herewith, the pressure distibution of the deformed bearing easily can be calculated. 
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4.4 Definition of pressure area for deformed bearing 
The definition of the pressure area so far and the corresponding boundary conditions apply for an undeformed 
bearing which is not slanted. In this case the pressure distribution starts at the angle with the minimum height of 
bearing gap and ends in the area just over the maximum height of the gap. Considered over the width these both 
straight lines of the minimum and maximum heights of bearing gaps will turn to curves, if the bearing is de-
formed and slanted. These limiting curves ϕhmax and ϕhmin are determined by the calculation of minimum and 
maximum height of bearing gap on the basis of the grid line in circumferential direction. The above mentioned 
equation system is set up for all points of the grid, which are situated within these boundary curves.

0

1

360°

_
z

ϕ

pressure area

pressure=0

pressure=0

ϕhmax(z) ϕhmin(z)

discretise bearing gap

Figure 7. Discretise pressure area of deformed and slant bearing  

4.5 Identification the position of shaft at a defined operating point 
The assumed forces of the model correspond to the forces which work on the bearing in reality and apply at a 
certain desired operating point. By variation of the eccentricity and its direction the distribution of pressure can 
be adjusted to such an extent that the generated reaction force of the bearing is poised in equilibration with the 
outer forces which work on the bearing. The searched position of the trunnion is calculated iteratively. 

pressure of oil reaction forces
of the bearing

comparison with 
external force

varied the 
position of shaft

operating point

pressure of oil

deformation of the contact surfaces film thickness of bearing gap vertical elastic deflection of shaft

axial direction axial direction

axial direction angle

angle angle

Figure 8. Procedur to identify the position of shaft at a defined operating point  

Based on the position of the trunnion determined in the operating point, the stiffness and damping matrixes are 
approximately calculated by means of differential quotients. The horizontal and vertical position of the trunnion 
and its velocity as well as the slanting position are variied, and the changed vertical and horizontal components 
of the reaction force of the bearing and the changed moment of the bearing can be determined. 
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5 Summary  
With this paper, the backgrounds of an Elasto-Hydrodynamic (EHD) bearing and a way to set up an appropriate 
simulation model as well as its implementation have been presented. It described a procedure for an independent 
calculation of the deformation of the mechanical components and the pressure of the lubricant inside the bearing 
gap by using influence functions and the principle of superposition. The used geometry of the bearing gap is 
shown by including the deformation and slunt of the bearing. Looking forward, the presented procedure for the 
calculation of the hydrodynamic bearing should be extended by hydrostatic effects.  
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