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Abstract. A metaheuristic based on scatter search for global dynamic optimization of chemical 
and bio-chemical processes is presented. It is designed to overcome typical difficulties of non-
linear dynamic systems optimization such as noise, flat areas, non-smoothness and/or discontinui-
ties. It balances between intensification and diversification by coupling a local search procedure 
with a global search and makes use of memory to avoid simulations in previously explored areas. 
Its application to three dynamic optimization case studies proves its efficiency and robustness, 
showing also a very good scalability. 

1 Introduction 
Dynamic optimization appears in many industrial applications to optimize a pre-defined performance index (e.g., 
profitability) subject to some specifications over a time interval. Objective functions and/or constraints formu-
lated from mathematical models describing industrial processes are usually highly nonlinear, which often causes 
non-convexity. Besides, non-smoothness and discontinuities can be present, thus the use of global optimization 
methods is needed for many dynamic optimization problems [7]. In recent years, a special class of stochastic 
global optimization methods called metaheuristics, which provide excellent solutions (often the global optimum) 
in relatively short computation times, has appeared. 

Scatter search is a population-based metaheuristic introduced by Glover [12] which combines a global phase 
with an intensification method, usually a local search [16]. Compared to other evolutionary or genetic algo-
rithms, scatter search has a small population (called reference set or RefSet) consisting of high quality and di-
verse solutions which are systematically combined. Our scatter search-based algorithm has been written in Mat-
lab under the name SSm. This study goes beyond a simple exercise of applying scatter search to dynamic optimi-
zation problems, but presents innovative mechanisms to obtain a good balance between intensification and diver-
sification in a short-term search horizon. In many instances, dynamic optimization problems are non-convex and 
multimodal, thus the use of global optimization techniques becomes crucial for solving them [7]. The application 
of our algorithm for solving nonlinear optimization problems arising from chemical and biological systems has 
provided excellent results [10, 18]. 

This paper is organized as follows: Section 2 states the problem of dynamic optimization. Our algorithm is de-
picted in Section 3. Section 4 presents the three case studies used in this paper for our experiments as well as the 
results obtained. The paper finishes with some conclusions.

2 Dynamic optimization: problem statement 
The general dynamic optimization problem has the following mathematical form: 

( ), ,
min ( ), ( ), ( ), ,

f
f f f ft t

C t t t t
u v

x z u v  (1) 

subject to the systems dynamics: 
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where /d dt/d dt/x x� , /t t/ tx x , //x x , 2 2/2 / 2x x ; ( ) nl ndt nl ndx X R  (with nl = number 

of lumped state variables and nd = number of distributed state variables) and ( ) mt mz Z R  are the vectors of 

differential and algebraic states respectively; ( ) pt pu U R  is the vector of control (input) variables; 

( ) qt qv V R  are time invariant parameters; t is the time (and tf is the final time); C is a functional to be 
minimized; F is the set of partial differential-algebraic equations describing the systems dynamics; finally, x0, z0, 
and u0 are the values of the respective vectors at the initial time t0, and xx  is the value of x at spatial boundary. 

Equality and inequality constraints may be imposed. Some of them must be satisfied over the whole process time 
(path constraints), 

( ), ( ), ( ), ,path f f f ft t t t ttH x z u v 0  (7) 

( ), ( ), ( ), ,path f f f ft t t t ttG x z u v 0  (8) 

while others must be only satisfied at the end of the process (endpoint constraints), 

( ), ( ), ( ), ,end f f f ft t t t ttH x z u v 0  (9) 

( ), ( ), ( ), ,end f f f ft t t t ttG x z u v 0  (10) 

The control variables and/or the time-invariant parameters may be subject to lower and upper bounds: 

( )lb ubt( ) ub( )u u u  (11) 

lb ububv v v  (12) 

In practice, the dynamic optimization of distributed systems typically involves transforming the original system 
into an equivalent lumped system and applying lumped-system dynamic optimization methods. Therefore, a 
spatial discretization approach is usually used to transform the original infinite dimension partial differential 
equations (PDE) into a large-scale, and possibly stiff, set of ordinary differential equations (ODEs) [4]. The 
accurate solution of the resulting ODE system then often requires the use of an implicit ODE solver. 

 In this work we will consider the CVP approach [22] using the Piecewise Constant approximation, PC (i.e., zero 
order polynomial) with fixed-length time intervals. Different number of intervals will be used for each problem 
in order to check the scalability of the different optimization methods. 

3 A scatter search algorithm for dynamic optimization of chemical and bioprocesses 

3.1 Diversification Generation Method: 
SSm begins by generating an initial set of diverse vectors in the search space. The method makes use of memory 
taking into account the number of times that every decision variable appears in different parts of the search space 
[13]. 

3.2 Initial RefSet formation: 
For building the initial RefSet, after generating the set of diverse solutions, a subset of high quality and diverse 
points is selected. The first step consists in evaluating all diverse vectors and select some of them in terms of 
quality. The RefSet is completed with the remaining diverse vectors by maximizing the minimum Euclidean 
distance to the included vectors in the RefSet. 

3.3 Subset Generation and Solution Combination methods: 
After the initial RefSet is built, its solutions are sorted according to their quality and we apply the Subset Genera-
tion Method. In our implementation, it consists in selecting all pairs of solutions in the RefSet to combine them. 
To avoid repeating combinations with the same pair of solutions, we use a memory term which keeps track of 
the pairs previously combined. Regarding the Solution Combination Method, we use a type of combination 
based on hyper-rectangles [21], which enhances the diversification. Depending on their position in the RefSet 
every pair of combined solutions may generate from two up to four new solutions.  

3.4 Updating the RefSet: 
As recommended by Laguna and Martí [17], we update the RefSet considering the quality of the elements. This 
strategy may cause convergence to sub-optimal solutions or stagnation of the search in flat areas. To avoid these 
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effects, we have implemented two filters [10] which restrict the incorporation of solutions that contribute only 
slight diversity to the RefSet. 

3.5 Improvement Method: 
The Improvement Method consists in a local search, selecting the initial points by means of different filters. In 
this work, we have considered a gradient-based method [11] and the Nelder and Mead method implemented in 
Matlab [1]. In applications related to chemical and bioprocess engineering, we often face time-consuming 
evaluation problems or complex topologies which can make the local search inefficient. This implies that the 
application of the Improvement Method should be restricted to a low number of promising solutions. Here we 
use merit and distance heuristic filters introduced by Ugray et al. [21] to avoid performing local searches from 
poor quality solutions or from solutions which are likely to provide already found local minima. 

3.6 RefSet Rebuilding: 
Due to the memory term which avoids combinations between RefSet members previously combined, the optimi-
zation procedure may stop if no new solutions enter the RefSet in a given iteration. Advanced scatter search 
designs overcome this problem by resorting a mechanism to partially rebuild the RefSet. The method is usually 
the same as that used to create the initial RefSet, in the sense that it uses the max-min distance criterion for se-
lecting diverse solutions. We propose an alternative strategy to maximize the number of search directions. In this 
strategy, the vectors refilling the RefSet are chosen to maximize the number of relative directions defined by 
them and the existing vectors in the RefSet [10]. 

3.7 Intensification strategies: 
One of the filters mentioned above may prevent the search from focusing on intensification, especially during the 
first iterations. To allow combinations between high quality solutions (which do not apply to enter the RefSet 
because of the distance filter) and RefSet members, we store the solutions which can not enter the RefSet but 
have a better function value than the second RefSet member. These stored solutions are then combined with the 
best RefSet solution, increasing the probability of obtaining high quality solutions by combination in early stages 
of the search [10]. Another advanced strategy (the go beyond strategy) to enhance the intensification of the 
search has been implemented in our algorithm. It consists in exploiting promising directions [9]. 

4 Computational experiments 
In this section, a set of bioprocess dynamic optimization problems will be used as case studies to test the per-
formance of the algorithm proposed in this work. A set of different state-of-the-art global optimization methods 
has been selected to compare their results with those obtained with the algorithm proposed in this study: CMAES 
[2], DE [20], SRES [19], DIRECT [14] and OQNLP [15]. Regarding stochastic solvers, ten runs were performed 
for each problem 

4.1 Ethanol production in a fed-batch reactor 
This system is a fed-batch bioreactor for the production of ethanol [6]. The objective is to find the feed rate 
which maximizes the yield of ethanol. Table 1 presents results for every solver with the different levels of discre-
tization considered. Figure 1 presents the optimal control profile for the highest level of discretization. 

 

  CMAES DE glcDirect OQNLP SRES SSm 

=10 
Best 

Mean 

Worst 

20316.11   

19889.67 

18996.02  

20316.08 

20100.72 

19672.46 

20203.74 

-- 

-- 

20316.11 

-- 

-- 

20305.96 

20093.14 

19554.01 

20316.11 

20291.38 

20192.48 

=20 
Best 

Mean 

Worst 

20412.14      

20273.76 

19953.39 

20404.36 

20383.95 

20341.29 

19738.01 

-- 

-- 

20412.19 

-- 

-- 

20327.11 

20237.58 

20095.71 

20412.19 

20412.19 

20412.19 

=40 
Best 

Mean 

Worst 

20430.84      

20360.73  

20110.08 

20375.32 

20239.27 

19902.08 

19544.88 

-- 

-- 

20444.47 

-- 

-- 

20214.40 

19726.07 

19466.64 

20444.86 

20444.86 

20444.86 

Table 1. Results for the ethanol production problem. 
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Figure 1. Optimal control profile for the ethanol production problem (  = 40). 

4.2 Penicillin production in a fed-batch fermenter 
This problem deals with the dynamic optimization of a fed-batch fermenter for the production of penicillin [6]. 
The optimal control problem is to maximize the total amount of penicillin produced using the feed rate of sub-
strate as the control variable. In our experiments, SSm provided the best solution for the levels of discretization 

=10, 40. Table 2 presents results for every solver with the different levels of discretization and Figure 2 pre-
sents the optimal control profile for the highest level of discretization. 

  CMAES DE glcDirect OQNLP SRES SSm 

=10 
Best 

Mean 

Worst 

87.934 

87.837 

87.340 

87.934 

87.914 

87.835 

87.258 

-- 

-- 

87.775 

-- 

-- 

87.927 

87.688 

87.348 

87.931 

87.906 

87.889 

=20 
Best 

Mean 

Worst 

87.948 

87.841 

87.599 

88.013 

87.955 

87.767 

84.490 

-- 

-- 

87.400 

-- 

-- 

87.671 

86.900 

85.064 

87.998 

87.885 

87.796 

=40 
Best 

Mean 

Worst 

87.914 

87.861 

87.745 

87.926 

87.802 

87.565 

80.657 

-- 

-- 

87.547 

-- 

-- 

82.709 

82.709 

82.709 

87.999 

87.863 

87.595 

Table 2. Results for the penicillin production problem. 
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 Figure 2. Optimal control profile for the ethanol production problem (  = 40). 

4.3 Drying operation 
In this section we consider a food convective drying problem, similar to the one formulated by Banga and Singh 
[5]. The aim is to dry a cellulose slab maximizing the retention of a nutrient. The dynamic optimization problem 
associated with the process consists of finding the dry bulb temperature along the time to maximize the nutrient 

1590

I. Troch, F. Breitenecker, eds.      ISBN 978-3-901608-35-3



retention at the final time. Table 3 presents results for every solver with the different levels of discretization and 
Figure 3 presents the optimal control profile for the highest level of discretization. 

 

  CMAES DE glcDirect OQNLP SRES SSm 

=10 
Best 

Mean 

Worst 

0.20002 

0.19710 

0.19108 

0.20003 

0.19683 

0.18939 

0.19979 

-- 

-- 

0.19875 

-- 

-- 

0.20001 

0.19894 

0.19579 

0.20003 

0.19694 

0.18742 

=20 
Best 

Mean 

Worst 

0.19997 

0.19696 

0.19298 

0.19913 

0.19608 

0.19185 

0.19329 

-- 

-- 

0.15483 

-- 

-- 

0.19989 

0.19878 

0.19728 

0.20010 

0.19687 

0.19326 

=40 
Best 

Mean 

Worst 

0.19952 

0.19751 

0.19522 

0.19859 

0.19442 

0.19103 

0.18848 

-- 

-- 

0.15102 

-- 

-- 

0.19001 

0.18796 

0.18623 

0.19788 

0.19618 

0.19311 

Table 3. Results for the drying process problem. 
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Figure 3. Optimal control profile for the drying process problem (  = 40). 

5 Executive summary of results 
In this section we provide a summary of the results obtained in this work by making use of the performance 
profiles methodology [8].  Following [3], we define the success performance FE for a solver on a specific prob-
lem by: 

#  all runs (10)
# sucessful runsmeanevalmeanevalmFE  (13) 

where a run is considered successful if it obtained the optimal solution with a relative error ≤ 0.01% (in our prob-
lems, we consider it as the best solution found by any of the solvers). With this definition, the best success per-
formance FEbest is given by the lowest value of FE for every problem. Figure 4 shows the empirical distribution 
function of the success performance FE/FEbest over all the problems. As shown in the performance profiles, SSm 
solves the highest percentage of problems compared with the rest of solvers tested. 

Conclusions 
We have developed a scatter search-based methodology which intends to be effective for solving global optimi-
zation problems from the biotechnological and food industries. The procedure treats the objective function as a 
black box, making the search algorithm context-independent. We have expanded and advanced knowledge asso-
ciated with the implementation of scatter search procedures. We have tested the proposed methodology over a 
set of dynamic optimization problems from the biotechnological and food industries. In order to have an idea 
about their efficiency, they have been compared with other state-of-the-art global optimization methods. The 
results obtained showed that the proposed methodology is adequate for the kind of problems intended to solve. 
In all cases our algorithm was competitive, providing the best solution among the tested solvers in many of the 
examples. It is to note that the algorithm's behaviour is not affected by the problem size since it provides excel-
lent results for every level of discretization considered in this study. 
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Figure 4. Performance profiles. 
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