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Abstract. Mathematical epidemiology studies the infectious disease propagation among populations.
The basic assumption consists in partitioning the whole population into a few classes, of which suscep-
tible and infected individuals are compulsorily present in the model. Other classes could account for
instance for latent individuals, i.e. those infected but in which the disease is still not able to spread to
others, removed individuals, i.e. those who have been recognized as infectious and therefore quaran-
tined, and so forth.

For many diseases that were considered fatal long time ago, but for which suitable cures were devel-
oped, a recrudescence is observed in these days, due to the fact that the infectious agents develop strains
that are resistant to the administered drugs, when the latter perhaps are not assumed regularly or with
the prescribed protocol. The goal of this paper is the study of the transmission of a disease which
shows a weak, curable form, and a strong, possibly lethal stage. From the either one of the two stages
individuals can move to the other one, this being the result of success or failure in the cures.

Our results show that if the net birth rate of the population is negative, the system collapses and the
population is wiped out. However if the net birth rate is positive, there occur two possible equilibria:
the origin now becomes unstable and an interior endemic equilibrium now arises. We have shown
numerically that it bifurcates to originate stable limit cycles around it, for suitable choices of the pa-
rameter values. The influence of the model parameters is simulated and the key ones for its control are
identified.

1 Introduction
Mathematical epidemiology studies the infectious disease propagation among populations. The basic assumption
consists in partitioning the whole population into a few classes, of which susceptible and infected individuals
are compulsorily present in the model. Other classes could account for instance for latent individuals, i.e. those
infected but in which the disease is still not able to spread to others, removed individuals, i.e. those who have been
recognized as infectious and therefore quarantined, and so forth.

For many diseases that were considered fatal long time ago, but for which suitable cures were developed, a re-
crudescence is observed in these days, due to the fact that the infectious agents develop strains that are resistant
to the administered drugs, when the latter perhaps are not assumed regularly or with the prescribed protocol. The
goal of this paper is the study of the transmission of a disease which shows a weak, curable form, and a strong,
possibly lethal stage. From the either one of the two stages individuals can move to the other one, this being the
result of success or failure in the cures.

This paper is not a complete evaluation of the possible strategies in administration of the therapies of these diseases.
This has been attempted elsewhere for the case of tuberculosis, [10]. The interested reader can also consult the
bibliography of the paper [10] for further references on this theme. Rather, we focus here really on the possibility
of having a mild form of a disease and a virulent, possibly lethal one, although in principle allowing the possibility
of recovering from both and look only at the dynamics among these stages.

2 System equations
Let S(t) denote the class of susceptibles, W (t) denote the class of weak infectives and V (t) denote the class of
strong infectives. The total population is then N(t) = S(t)+W (t)+V (t). The equations of model we propose are
as follows⎧⎨⎩ Ṡ = ρ

(
1− 1

K N
)

S−βSW − (γ1 + γ2)SV +πW +νV,
Ẇ = −λW +βSW + γ1SV − (π +m)W,
V̇ = λW + γ2SV −νV −μV.

(1)

All parameters of the model are taken to be real and nonnegative, except for ρ which can be negative.

Susceptible individuals are the only ones able to reproduce and grow following a logistic model with population
pressure constant K−1, with net birth rate ρ = b−m, this being the difference between the birth b and the death
m rates. They can catch the disease by means of contact with weak infectives with incidence β , and thus move to
class W , but they also can come in contact with the strong infectives at rate γ1 + γ2. As a result of this intercourse

1786

I. Troch, F. Breitenecker, eds.      ISBN 978-3-901608-35-3



they can become weakly or strongly infected. Namely, the fraction γ1 of them migrates to class W , the remaining
one at rate γ2 goes into class V .

Individuals that contracted the weak form of the disease can also worsen or recover. In the former case they move
to class V , with rate λ . Those who recover return to class S with rate π . The weak infectives die with natural death
rate m.

Finally, the strongly infected can also recover to pass to class S with rate ν . They also experience disease-related
mortality, so that their cumulative death rate, including also the natural mortality, is denoted by μ .

Note that the model allows for direct transitions “down the line" from susceptibles to both kinds of infected, while
it does not allow a partial recovery from the strong form of the disease back to its mild form, only a complete
healing is envisaged, this leading a strongly infected back into the class of susceptibles. This makes sense, since
we assume an SIS type of disease. In [10] more complicated recovery dynamics are considered.

The logistic model is rather complicated, so in what follows we will consider the following simplified model where
susceptible individuals grow by following a Malthus model with birth and natural death rate ρ:⎧⎨⎩ Ṡ = ρS−βSW − (γ1 + γ2)SV +πW +νV,

Ẇ = −λW +βSW + γ1SV − (π +m)W,
V̇ = λW + γ2SV −νV −μV.

(2)

The paper is organized as follows. We begin by giving a boundedness result for the full system (1) and then we
turn to a more thorough analysis of (2) in Sections 4 and 5. In the following Section we include the consideration
of several particular cases of interest. Some thorough simulations are then discussed in Section 7. We conclude
with some inferences on the experience made with this model.

3 Boundedness of the logistic model
In this section, we consider the logistic model (1) and show the boundedness of its solutions. To do this, we
consider the total population N = S +W +V , and an arbitrary constant α > 0, and find upon summation of the
equations (1)

Ṅ +αN = −ρ
K

S2 +(ρ +α − ρ
K

W − ρ
K

V )S +(α −m)W +(α −μ)V ≡ P(S).

But we can rewrite the right hand side in the form P(S) ≡ P1(S)+P2(S) where

P1(S) = −ρ
K

S2 +(ρ +α)S, P2(S) = −ρ
K

(W −V )S +(α −m)W +(α −μ)V. (3)

Since in (3) the parabola can be bounded above by the value at its vertex Smax = ρ+α
2ρ K giving

P1(S) ≤ P1(Smax) =
(ρ +α)2

4ρ
K,

and if α < min{μ,ν}, also P2(S) ≤ 0. It follows that

Ṅ +αN ≤ (ρ +α)2

4ρ
K.

By applying Gronwall’s inequality it then follows

N(t) ≤C e−αt +
(ρ +α)2

4ρα
K ≤ H, C,H ∈ R

showing as desired the boundedness of the total population and therefore also of each one of its subpopulations.

4 Equilibrium points of the simplified model
The origin (0,0,0) is the only boundary equilibrium point. Note that if ρ < 0, then by adding all the equations (2)
we find the dynamics of the whole population

Ṅ = ρS−mW −μV < 0, (4)

indicating that the population vanishes, i.e. suggesting that the origin in this case is a globally asymptotically stable
equilibrium.
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From now on, we therefore focus on the model (2) assuming that ρ is positive. Searching for nontrivial equilibria,
we find the points (S,W,V ) with

W =
ρS(μ +ν − γ2S)

mμ +mν +λ μ −mγ2S
, V =

λρS
mμ +mν +λ μ −mγ2S

,

where S is determined by the two roots of the parabola

Σ(S) = βγ2S2 − (mγ2 + γ2λ +β μ + γ2π +βν + γ1λ )S +(λ +π +m)(μ +ν),

i.e. explicitly

S1,2 =
(λ +π +m)γ2 +λγ1 +β (μ +ν)∓√

Δ
2βγ2

.

Here,

Δ = [(λ +π +m)γ2 +λγ1 −β (μ +ν)] (λ +π +m)γ2

+ [β (μ +ν)− (λ +π +m)γ2 +λγ1] (μ +ν)β +[(λ +π +m)γ2 +λγ1 −β (μ +ν)]γ1λ .

The roots are real if

Δ> 0 (5)

and since
Σ(0) > 0, Σ′(0) = −(mγ2 + γ2λ +β μ + γ2π +βν + γ1λ ) < 0,

both S1 and S2 are positive. To get feasibility of the equilibrium, we need to require positivity of all its components
S1,2, W1,2 and V1,2. This reduces to satisfying the inequality

0 < S1,2 <
μ +ν

γ2
. (6)

Upon verification, it turns out that only (S1,W1,V1) is a feasible solution, while (S2,W2,V2) is not acceptable.
The feasibility condition (6) of (S1,W1,V1) is equivalent to the following explicit condition in terms of the model
parameters

β <
γ2(λ +π +m)+λγ1

μ +ν
. (7)

In summary, for ρ > 0, the model exhibits the equilibria

E0 = (0,0,0), E1 =

(
S1,

ρS1(μ +ν − γ2S1)

mμ +mν +λ μ −mγ2S1
,

λρS1

mμ +mν +λ μ −mγ2S1

)
.

When ρ < 0 the model has no interior solutions as neither (S1,W1,V1) nor (S2,W2,V2) are feasible; as remarked
above its only equilibrium point is the origin.

5 Stability of equilibria
5.1 The case ρ < 0

The characteristic equation of the Jacobian evaluated at the origin has the three negative eigenvalues σ1 = ρ ,
σ2 = −λ −π −m, and σ3 = −μ −ν , so E0 = (0,0,0) is a locally asymptotically stable equilibrium point. In this
case we have already seen that the total population always decreases to zero, so no other equilibrium can exist.
Being the only one in this case, the origin is also globally asymptotically stable.

This can also be rigorously shown by using the total population size N as Lyapunov function L. Note indeed that
L(S,W,V ) ≡ N ≥ 0 everywhere in the subset R+ of the phase space, R+ ≡ {(S,W,V ) : S ≥ 0, W ≥ 0, V ≥ 0}.
Clearly L(E0) = 0. From (4) it follows that L̇ < 0 in R+. These properties ensure then that L is a suitable Lyapunov
function, and global asymptotic stability of E0 follows.

5.2 The case ρ > 0

To analyze the stabilty of equilibrium points, we need the Jacobian of (2)

JS,W,V =

⎛⎜⎜⎜⎝
ρ −βW − (γ1 + γ2)V −βS +π −(γ1 + γ2)S +ν

βW + γ1V −λ +βS−π −m γ1S

γ2V λ γ2S−μ −ν

⎞⎟⎟⎟⎠ .
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At E0 the characteristic equation has the eigenvalues σ1 = ρ , σ2 = −λ − π −m, σ3 = −μ − ν , from which it
follows that E0 is unstable.

Similarly, the characteristic equation evaluated at E1 is

0 = D1 ≡

∣∣∣∣∣∣∣∣∣
ρ −βW1 − (γ1 + γ2)V1 −σ −βS1 +π −(γ1 + γ2)S1 +ν

βW1 + γ1V1 −λ +βS1 −π −m−σ γ1S1

γ2V1 λ γ2S1 −μ −ν −σ

∣∣∣∣∣∣∣∣∣ .
Explicitly, it is the cubic equation

−σ3 +Cσ2 +Bσ +A = 0,

where the coefficients A, B e C are rather complicated functions of the parameters of the model and of the equilibria
value, as follows

A =
1

mμ +mν +λ μ −mγ2S1

(
ρS2

1m2γ2
2 +ρmμ2π +ρmν2π +ρλ μπν2ρλ μπγ2S1 −2ρλ 2μγ1S1

−2ρλ 2μγ2§1 +ρλ μ2π −2ρmνγ1S1λ +3ρλ μβS2
1γ2 −2ρλ μ2βS1 −2ρλ μβS1ν +ρm2ν2 −2ρmμγ1S1λ

−2ρmν2βS1 +2ρmμπν −2ρmμ2βS1 −4ρmμβS1ν +ρS2
1mggγ1λ +3ρmμλν +2ρmμ2λ +4ρS2

1mγ2βν
+ρS2

1mγ2
2 π −2ρS1m2γ2μ +4ρS2

1mγ2β μ −2ρS1mγ2πμ −2ρS1mγ2πν −2ρS1m2γ2ν −2ρS1mγ2λν
−2ρS3

1mγ2
2 β +ρm2μ2 +ρS2

1mγ2
2 λ −4ρS1mγ2λ μ + ρλ 2μν +ρλ 2μ2 +2ρm2μν +ρmν2λ

)
,

B =
1

mμ +mν +λ μ −mγ2S1
(−βS1ρνλ −2ρλ μβS1 +ρmμπ +2ρmμλ +3S1mγ2λ μ −ρμγ1S1λ

−mν2λ −mν2π +ρm2μ −2m2μν +S3
1mγ2

2 β −λ 2μ2 +2S1mγ2πν +2S1mγ2λν −2S2
1mγ2βν −S2

1mγ2
2 π

+2S1m2γ2μ −2S2
1mγ2β μ +2S1mγ2πμ +2S1m2γ2ν +mμ2βS1 +mν2 ∗βS1 −S2

1m2γ2
2 +mμγ1S1λ

−2mμπν +2mμβS1ν −S2
1mγ2γ1λ +mνγ1S1λ −λ μβS2

1γ2 +λ μ2βS1 +λ μβS1ν −λ μ2π −λ μπν
+λ 2μγ1S1 +λ 2μγ2S1 −mμ2π −ρS3

1γ2
2 β +2ρS2

1γ2β μ +2ρS2
1γ2βν −2ρμβS1ν −ρμ2βS1 −ρν2βS1

+ρmμ2 +ρmν2 +ρλ μ2 −2ρS1mγ2μ −2ρS1mγ2ν +ρλ μν +2ρmμν +ρS2
1mγ2

2 −2mμ2λ −λ 2μν
−3mμλν +λ μπγ2S1 +ρλ 2μ −m2ν2 +2ρS2

1mγ2β −ρS1mγ2π −2ρS1mγ2λ −2ρmμβS1 −2ρmνβS1

+2βS2
1ργ2λ +ρmνλ +ρmνπ +ρλ μπ −S1λ 2ργ1 −S1λργ2π −S1λργ1m−S1λ 2ργ2 −ρνγ1S1λ

−2ρλ μγ2S1 −m2μ2 +ρm2ν −ρS1m2γ2 −S2
1mγ2

2 λ
)
,

and

C =
1

mμ +mν +λ μ −mγ2S1

(
λ μγ2S1 −ρS1mγ2 −βS1ρμ −S1λργ1 −S1λργ2 +βS2

1ργ2 −S2
1mγ2

2

−mμπ −2mμν +S1m2γ2 −mμ2 +S1mγ2λ −βS1ρν −S2
1mγ2β +2S1mγ2μ

+S1mγ2π +mμβS1 +mνβS1 +2S1mγ2ν +ρλ μ +ρmμ −m2μ −λ μ2 −mν2 −m2ν
− +λ μβS1 +ρmν −mνλλ 2μ −mνπ −λ μπ −2mμλ −λ μν

)
.

To find the three eigenvalues, we can intersect the linear function Bσ + A with the cubic σ3 −Cσ2, which has a
double root at the origin and the remaining one at s = C ∈ R.

For C > 0 we have at least an intersection with the straight line Bσ +A, real positive or imaginary with real positive
part, guaranteeing thus instability. Further, when C < 0 the intersections with the straight line Bσ +A have negative
real parts if we impose A,B < 0.

In order that a Hopf-bifurcation occurs, we need to have immaginary pure eigenvalues; to this end we factorize the
polynomial −σ 3 +Cσ2 +Bσ +A in a quadratic polynomial of the form σ2 +α2

1 , so that

−σ3 +Cσ2 +Bσ +A = (σ2 +α2
1 )(−σ +α2) = −σ3 +α2σ2 −α2

1 σ +α2
1 α2.

To satisfy this condition, we must have A = −BC, i.e. A + BC = 0, in addition to the conditions A,B,C < 0.
Moreover, a transversality condition must be hold. In view of the rather complicated coefficients these conditions
are very difficult to investigate analytically. We therefore turn to numerical simulations. By varying the values of
parameters, we obtain different situations.

In the Fig.1 the stable equilibrium behavior of the system is found by setting β = 0.1, γ1 = 0.5, γ2 = 0.5, λ = 0.3,
μ = 0.1, ν = 0.3, π = 0.3, ρ = 0.4 and m = 0.1. Note that these choices for the parameter values satisfy the
conditions A,B,C < 0 but not A+BC = 0.
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Figure 1: Here and in all subsequent figures, top to bottom, are respectively shown the populations S, W and V as
functions of time. Stable coexistence equilibrium behavior for β = 0.1, γ1 = 0.5, γ2 = 0.5, λ = 0.3, μ = 0.1, ν = 0.3,
π = 0.3, ρ = 0.4 and m = 0.1.

If we now try to change the parameter values, so that A + BC is close to zero, we find the onset of oscillations,
which stabilize as time flows, as shown in Fig.2, with β = 0.1, γ1 = 0.1, γ2 = 0.9, λ = 0.1, μ = 0.35, ν = 0.01,
π = 0.01, ρ = 0.05 and m = 0.1.

Figure 2: Onset of oscillations: β = 0.1, γ1 = 0.1, γ2 = 0.9, λ = 0.1, μ = 0.35, ν = 0.01, π = 0.01, ρ = 0.05 and m = 0.1.
Left: the solutions in the time interval [0,60000]; right: blow up of the solutions over the time interval [58800,60000].

Finally, for the same values of λ and γ2, with the remaining parameter values given by β = 0.003, γ1 = 0.2,
μ = 0.06, ν = 0.005, π = 0.1, ρ = 0.02 and m = 0.2, we obtain the limit cycles behavior of Fig.3.

6 Special Cases
In this section we consider particular cases of (2).

Note that in the model β and γ1 cannot vanish at the same time, as well as λ and γ2. In such case indeed there
would be no possibility of transitions into each of the infected classes.

6.1 No W →V transition

Assume that the weakly infected individuals cannot become strongly infected, i.e. λ = 0. The equilibria in addition
to the origin are the points

E1 =

(
π +m

β
,

ρ(π +m)

mβ
,0

)
,
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Figure 3: Limit cycles: β = 0.003, γ1 = 0.2, γ2 = 0.9, λ = 0.1, μ = 0.06, ν = 0.005, π = 0.1, ρ = 0.02 and m = 0.2.
Left: the solutions in the time interval [0,60000]; right: blow up of the solutions over the time interval [54000,60000].

which is feasible if and only if ρ > 0 and

E2 =

(
μ +ν

γ2
,

γ1ρ(ν + μ)2

γ2(γ1m(ν + μ)−μ(β (ν + μ)− γ2(m+π)))
,

− (ν + μ)ρ(β (ν + μ)− γ2(m+π))

γ2(γ1m(ν + μ)−μ(β (ν + μ)− γ2(m+π)))

)
.

For feasibility of the latter, ρ > 0 is necessary, together with the condition

β <
γ2(π +m)

ν + μ
.

For E0 the eigenvalues are σ1 = ρ , σ2 =−π −m, σ3 =−μ −ν , so that the origin is stable if and only if ρ < 0. The
characteristic equation at E1 and at E2 is a cubic of the form −σ3 +Cσ2 +Bσ +A = 0, with A, B e C functions of
the parameters of the model.

6.2 V unrecoverable state, no W →V transition

We assume that the disease cannot progress from the mild form to the strong form and also that once an individual
gets infected with the virulent form he cannot recover, i.e. ν = λ = 0. The equilibria are again the origin E0 =
(0,0,0) and the points

E1 =

(
π +m

β
,
(π +m)ρ

βm
,0

)
, (8)

E2 =

(
μ
γ2

,− γ1μρ
γ2(−γ1m+ μβ −πγ2 −mγ2)

,
(μβ −πγ2 −mγ2)ρ

γ2(−γ1m+ μβ −πγ2 −mγ2)

)
E1 is feasible if and only if ρ > 0, E2 is feasible only for ρ > 0 and if

β <
γ2(π +m)

μ
.

The following are the eigenvalues at E0: σ1 = ρ , σ2 = −π −m, σ3 = −μ . From this, the origin is stable if and
only if ρ < 0.

The characteristic equations evaluated at E1 and at E2 are of the form

−σ3 +Cσ2 +Bσ +A = 0,

with coefficients for E1 given by

A =
1

β
(γ2π + γ2m−μβ )ρ (π +m)

B =
1

mβ
[(γ2π + γ2m−μβ )ρπ −βρm(π +m)]

C =
1

mβ
[(γ2π + γ2m−μβ )m−βρπ]
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while letting E = γ2(γ1m−μβ +πγ2 +mγ2) > 0, those for E2 are

A = − 1

E

(
ρμπ2γ2

2 +ρμm2γ2γ1 +ρμπγ2γ1m−2ρμ2βπγ2

−2ρμ2βmγ2 +ρμm2γ2
2 −ρμ2βγ1m+ρμ3β 2 +2ρμπγ2

2 m
)

B = − 1

E

(−ρμ2γ2β +ρμγ2γ1m+ρμγ2
2 m+ρμγ2

2 π + γ1ρmμβ −ρμ2βγ1 +ρμπγ2γ1

)
C =

1

E

(−2πγ2
2 m+m2γ2γ1 +m2γ2

2 + μ2β 2 +π2γ2
2 +ργ1πγ2

−μβγ1m+πγ2γ1m−2μβπγ2 −2μβmγ2) .

Necessary and sufficient conditions for stability for both equilibria can be expressed by the following Routh-
Hurwitz conditions

A < 0, C < 0, CB+A > 0,

thus implying also B < 0. Now B < 0 and C < 0 reduce to requiring respectively

γ2(π +m) < β [ρμπ +mρ(π +m)] , γ2(π +m) < β (mμ +πρ) . (9)

These conditions show that one of them is redundant. In fact they reduce to just B < 0 or C < 0 according to the
following inequality

mμ +ρμ < ρμπ +mρ(m+π).

Letting Γ≡ γ2(π +m)−β μ , the condition BC +A > 0 can be rewritten as

Γ2 +β 2ρm(π +m) > Γβρπ. (10)

An inspection of the coefficients for the case of E1 shows that a large μ makes them and Γ negative, satisfying thus
(9) and (10) as well. Therefore a large cumulative mortality rate for the strongly infected ensures the disappearance
of the strong form of the disease.

Alternatively, to get easy conditions for instability, we can determine positive intersections of the two functions
Bσ +A e σ3 −Cσ2.

In order to have a Hopf-bifurcation, we need again to pure immaginary eigenvalues, and that entails to require
A+BC = 0 in addition to the conditions A,B,C < 0. We investigate numerically this situation, as an example, we
take λ = ν = 0 and the other parameters with values given by β = 0.003, γ1 = 0.2, γ2 = 0.9, μ = 0.06, π = 0.1,
ρ = 0.02 and m = 0.2, see Fig.4. Under this regime, we find persistent oscillations.

Figure 4: λ = ν = 0, β = 0.003, γ1 = 0.2, γ2 = 0.9, μ = 0.06, π = 0.1, ρ = 0.02 and m = 0.2. Left: the solutions over
[0,60000]; Right: blow up of the solutions over [54000,60000].

6.3 Weak form of the disease is not contagious

We assume here that susceptibles are unable to contract the disease via contacts with the weakly infected, i.e.
β = 0.

The equilibria in this case are again the origin, and the point

E1 =

(
(λ +mπ)(ν + μ)

(λ +m+π)γ2 +λγ1
,

ργ1(λ +mπ)(ν + μ)2

((λ +m+π)γ2 +λγ1)(μ((λ +m+π)γ2 +λγ1)+mγ1(ν + μ))
,

ρ(λ +mπ)(ν + μ)

μ((λ +m+π)γ2 +λγ1)+mγ1(ν + μ)

)
,
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which is feasible if and only if ρ > 0.

At E0 the eigenvalues are σ1 = ρ , σ2 = −λ − π −m, σ3 = −μ − ν so that the origin is stable if and only if
ρ < 0. In a similar way as already seen for the other cases, the characteristic equation for E1 is a cubic of the form
−σ3 +Cσ2 +Bσ +A = 0, with A, B e C depending on parameters of the model in a complicated way.

6.4 Virulent contagion leads always to severe cases

Assume now that susceptibles cannot be weakly infected via contacts with strongly infected, i.e. γ1 = 0. There are
in this case two possible equilibria, other than the origin, namely

E1 =

(
ν + μ

γ2
,0,

(ν + μ)ρ
γ2μ

)
,

which is feasible if and only if ρ > 0, and

E2 =

(
λ +π +m

β
,
(β (ν + μ)− γ2(λ +π +m))ρ(λ +π +m)

β (λ μβ +m(β (ν + μ)− γ2(λ +π +m)))
,

ρλ (λ +π +m)

λ μβ +m(β (ν + μ)− γ2(λ +π +m))

)
.

For feasibility of the latter, ρ > 0 is required, together with the additional condition

β >
γ2(λ +π +m)

ν + μ
.

Once again, the origin has the eigenvalues σ1 = ρ , σ2 = −λ −π −m, σ3 = −μ −ν and therefore it it is stable if
and only if ρ < 0 and for E1, E2 we obtain again a cubic characteristic equation similar to the one seen above for
the other cases.

6.5 Severe stage cannot be obtained by contact with V ’s

Here we assume that susceptibles cannot contract the strong form of the disease via direct contacts with the strongly
infected, i.e. γ2 = 0. The equilibria are the origin and

E1 =

(
(λ +π +m)(ν + μ)

β (ν + μ)+ γ1λ
,

ρ(λ +π +m)(ν + μ)

(β (ν + μ)+ γ1λ )(m(ν + μ)+λ μ)(ν + μ)
,

ρλ (λ +π +m)(ν + μ)

(β (ν + μ)+ γ1λ )(m(ν + μ)+λ μ)

)
,

which is feasible if and only if ρ > 0.

E0 has the following eigenvalues σ1 = ρ , σ2 = −λ −π −m, σ3 = −μ −π , so that the origin is stable if and only
if ρ < 0. Also for E1 we obtain a cubic equation as in the former cases.

7 Numerical investigation of the limit cycles
In this section we analyze what happens to the oscillations earlier discovered in the model, focusing on the influence
each system parameter has on their properties. We begin by proposing a reference figure, for some values similar
to those of Figure 3, this time showing it in a smaller time interval, and at the same time explicitly plotting also the
prevalence of each subpopulation, i.e. the ratios of S, W and V over the whole population N, in the diagrams on
the right, see Figure 5.

Figures 6-13 contain the changes occurring by varying in turn each parameter. More specifically, we find that for
a high enough value of β = 3.7 the oscillations damp down to the equilibrium value E1, showing that this can be
taken as bifurcation parameter, Figure 6.

Figure 7 shows instead that the limit cycles are essentially indifferent to changes in the parameters γ1 and γ2.
The main changes concern the length of each oscillation, where longer periods of low infectivity are followed by
epidemics outbreaks leading to much higher prevalences in the class of strongly infected, while the class of weakly
infected seems to be less affected.

Similar considerations hold for changes in the parameter λ , Figure 8. The lower value λ = 0.001 shows higher
frequecies in the oscillations, the higher value λ = 0.8 leads to longer periods of very low endemicity, followed by
short epidemics outbreaks, with heavy prevalence for the virulent form of the disease.

The same behavior is observed in the changes for the parameter m, in the range [0.002,2.2]. As it becomes larger,
limit cycles periods become increase while their amplitudes also increase for the S and V classes, while decreasing
for the W class, Figure 9.
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Figure 5: Reference figures for the parameter values β = 0.003, γ1 = 0.2, γ2 = 0.9, λ = 0.1, μ = 0.06, ν = 0.0001,
π = 0.1, ρ = 0.02 and m = 0.2. On the left the subpopulations, on the right the prevalence of each class, all as functions
of time.

In Figure 10 we observe that the changes in frequency and periods of the oscillations is much more evident, due
to the higher sensitivity of the system with respect to the parameter μ , at low values, μ = 0.003 showing longer
periods, and at higher values μ = 0.57 much higher frequencies than ever noticed in other previous parameter
changes.

Decreasing the value of the parameter ν to zero, or to values close to it, gives again longer periods of oscillations,
while for the higher value ν = 0.045 we recover once more the stable equilibrium E1, Figure 11.

Changing π to low values gives again longer periods, π = 0.005 and to the larger value π = 2.4 shows higher
frequencies, Figure 12.

Finally, setting ρ = 0.004 gives the longest periods of all the simulations, and letting ρ = 3.8 recovers once again
the stable equilibrium point E1, Figure 13.

8 Some inferences
We proposed a model for a disease with a mild and a virulent stage raging in a population which reproduces. Our
results show that if the net birth rate of the population is negative, the system collapses and the population is wiped
out. However if the net birth rate is positive, there occur two possible equilibria: the origin now becomes unstable
and an interior endemic equilibrium now arises. We have shown numerically that it bifurcates to originate stable
limit cycles around it, for suitable choices of the parameter values.

An interpretation of the stable oscillations in all the subpopulations indicates that they correspond to reiterated
epidemics outbreaks. Therefore it may be much better to avoid them and rather keep the disease at a low level,
though endemic, than having the cycles which may lead to alternating low and very high peaks in the infected
populations.

The results of the simulations carried out in the previous Section indicate that some parameters are less relevant
to assess the dynamics of the epidemics. Among these, we certainly find γ1 and γ2, which influence mainly the
periods of the cycles and their amplitudes. If the time between successive disease outbreaks is of no too much
concern, also λ , m, μ and π are not too relevant. Thus the strong disease incidences γ1 and γ2 do not seem to play
a relevant role, in this situation, nor the transition rate from the class of weakly infected to the virulent stage of the
disease. The natural mortality also is of small relevance, as in a sense it could be intuitive in an epidemics model.
Also surprisingly the recovery rates from the mild stage of the disease into the susceptibles plays a marginal role
here. All these parameters become thus relevant only if one wants to delay the epidemics outbreaks and space them
more in time. Measures taken to act on these parameters so that their values change in the directions indicated by
the simulations will then be beneficial toward this goal. For the natural plus disease related mortality of the severely
infected class, μ , this is particularly evident.

Instead β , μ and ρ control the onset of the limit cycles. Thus a high contact rate with the weak form of the
infected leads to the stable equilibrium. It is when this incidence drops below a threshold that cycles start to
appear. The recovery rate from severely infected directly to susceptibles instead has a relevant role in setting the
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Figure 6: Parameter changed is here β = 3.7. On the left the subpopulations, on the right the prevalence of each class,
all as functions of time.

Figure 7: Parameter changed are here γ1 = 5.9 (left) and γ2 = 0.009 (right). On the left the subpopulations, on the right
the prevalence of each class, all as functions of time.

disease to an endemic form, if it has a high enough value. The net birth rate of susceptibles instead appears to be
the most important parameter in this model. In fact for very low values, one is able to spread the epidemics in time,
having them to appear only after long time intervals. For high enough values instead, the dynamics of the disease
settles toward the equilibrium point E1. In this case Figure 13 shows a very high prevalence of strongly infected
individuals, but by suitably influencing the other parameters it is perhaps possible to obtain a lower such prevalence.
This is shown in Figure 14 for the parameter values ρ = 3.8, ν = 0.2 and β = 2.3, where the prevalences of both
the mild and virulent forms of the disease become much smaller.
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Figure 8: Parameter changed is here λ = 0.001 (left) and λ = 0.8 (right). On the left the subpopulations, on the right
the prevalence of each class, all as functions of time.

Figure 9: Parameter changed is here m = 0.002 (left) and m = 2.2 (right). On the left the subpopulations, on the right
the prevalence of each class, all as functions of time.
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Figure 10: Parameter changed is here μ = 0.003 (left) and μ = 0.57 (right). On the left the subpopulations, on the right
the prevalence of each class, all as functions of time.

Figure 11: Parameter changed is here ν = 0.0 (left) and ν = 0.045 (right). On the left the subpopulations, on the right
the prevalence of each class, all as functions of time.

Figure 12: Parameter changed is here π = 0.005 (left) and π = 2.4 (right). On the left the subpopulations, on the right
the prevalence of each class, all as functions of time.
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Figure 13: Parameter changed is here ρ = 0.004 (left) and ρ = 3.8 (right). On the left the subpopulations, on the right
the prevalence of each class, all as functions of time.

Figure 14: Control of the disease prevalences by acting on the parameters ν = 0.2 and β = 2.3 while keeping ρ = 3.8,
compare with Figure 13. On the left the subpopulations, on the right the prevalence of each class, all as functions of time.
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