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Abstract. The focus of this contribution lies in the modelling, analysis and simulation of realistic
boundary conditions. We are especially concentrating on wave number dependent boundaries includ-
ing reflection, transmission and absorption of acoustic waves. The realistic treatment of boundary
conditions within accurate aeroacoustic simulations is of interest for [1], [5] et alii.
Our numerical research deals with the Spectral Method for a 3D-benchmark problem. To introduce
the spectral approach [3] we study the homogeneous Helmholtz equation in a 3D cuboid benchmark
geometry. After developing the theory, numerical results of the calculated Eigenmodes and related
Eigenfrequencies for different boundary conditions will be discussed.

1 Introduction
Aeroacoustic starts from the Euler equations describing the conservation of pressure p, density ρ and velocity u in
a fluid ⎛⎝ ρ

ρu
ρE

⎞⎠
t

+

⎛⎝ ρu
ρu2

u(ρE + p)

⎞⎠
x

= 0 . (1)

The ideal gas equation

p = ρRT (2)

closes the system. In (1) and (2) E denotes the energy, R the Boltzmann constant and T the temperature. In (1) we
study the 1D case with a homogeneous right side which can be easily expanded to the 3D Euler equations.
Because we are only interested in the far field, a perturbation ansatz in all three variables is performed

ρ(x,t) = ρ0 + ρ ′(x,t)
p(x,t) = p0 + p′(x,t)
u(x,t) = u0 + u′(x,t) (u0 = 0) .

(3)

With the linearized pressure-density-relation p′ = ρ ′c2, where c stands for the sound velocity, we arrive at the
linear Euler equations in one dimension

ρ ′
t + ρ0u′x = 0

u′t + c2

ρ0
ρ ′

x = 0 .
(4)

After a reformulation of the equations in (4) we end up with the hyperbolic Wave equation for each perturbed
variable u′, ρ ′ and p′. This derivation can be easily expanded to three dimensions in space x, y and z and would
end up in the three dimensional Wave equation for each perturbed variable. That leads to our first central formula,
the 3D Wave equation for the pressure

p′tt = c2Δp′ . (5)

The Wave equation (5) stands for the dispersion free and dissipation free wavelike transport of information with
finite velocity c.
Considering the time harmonical problem we get to the steady-state solution of the Wave equation represented by
the 3D Helmholtz equation in the frequency domain

Δp′ + k2 p′ = 0, c2 = ω2

k2 , k2 = k2
x +k2

y +k2
z . (6)

1173

Proceedings MATHMOD 09 Vienna - Full Papers CD Volume



One possibility to develop the Helmholtz equation (6) from the Wave equation (5) is to apply the Fourier transfor-
mation. In (6) ω stands for the circular frequency and k for the wavenumber. For both the Wave equation (5) as well
as the Helmholtz equation (6) we analyse the solution in dependency of general homogeneous boundary conditions

[
α ∂ p′

∂ n +β p′
]

∂ Ω
= 0, α,β ∈ C . (7)

In formula (7) different combinations are possible. For α = 0 and β �= 0 we end up in the Dirichlet, for α �= 0 and
β = 0 in the Neumann and for α �= 0 and β �= 0 in the Robin boundary condition. The ratio α

β stands for the wall
impedance. In the following sections p is used for p′ and an apostrophe stands for the first derivative in x.

The paper is organised as follows: In chapter 2 the theory of the Spectral Method is presented with the help
of the one dimensional Helmholtz equation described by the pressure p. First we analyse the method for equi-
spaced grids and then for clustered grids. After that we discuss the convergence relationships, the application of
higher dimensional problems and the inclusion of arbitrary homogeneous boundary conditions. In chapter 3 we
verify the theoretic characteristics of the method for selected examples in the time and frequency domain for the
related Wave as well as the Helmholtz equation. At the end in chapter 4 follow the conclusions and objectives.

2 Theory of the Spectral Method
For simplicity we derive the method by using the one dimensional case of the Helmholtz equation described by
the pressure p in the frequency domain, see (6). In the Spectral Method all spatial differentiation operators are
described as global differentiation operators. Consequently the one dimensional continuous Helmholtz equation in
p after discretization leads to the discrete eigenvalue problem described in a matrix vector equation

LN p + k2Ip = 0, N ∈ N . (8)

In (8) LN stands for the discrete Laplacian and I denotes the identity matrix. The method makes use of a global dif-
ferentiation technique based on trigonometric or Chebyshev interpolation and gains spectral accuracy for analytic
solutions, which will be presented in the next three subsections. The last subsection deals with higher dimensional
problems and how to include boundary conditions.

Spectral Collocation in Equispaced Grids in 1D

As a first step we define the one dimensional interpolant u of the sufficient smooth solution p by

u(x) =
N
∑
j=1

p jSh(x− x j), p j = p(x j) = u(x j), x ∈ Ω = [−π ,π ] . (9)

The interpolant, described by means of equidistant supporting points x j

x j = jh , j = 0, ...,N, h = 2π
N ,

is symmetric around zero and normalized. Therefore Sh is defined as

Sh(x) =
h sin( xπ

h )

2π tan( x
2 ) .

and behaves similar to the Sinus Cardinalis function

sinc(x) = sin(x)
x .

This realizes a symmetric Lagrange representation with trigonometric functions of the interpolant for the periodic
function p(x) in (9).
After differentiating equation (9) we arrive at

u′(x) =
N
∑
j=0

p jS′h(x− x j)

and consequently the first differentiation matrix DN consists of the following elements

(DN) jk = S′h(x j − xk) = (−1)( j−k)

2 cot( ( j−k)h
2 ), j,k = 0, ...,N . (10)
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The differentiation can now be written in matrix vector notation as⎛⎜⎜⎜⎝
u′(x1)
u′(x2)
...
u′(xN)

⎞⎟⎟⎟⎠ = DN

⎛⎜⎜⎜⎝
u(x1)
u(x2)
...
u(xN)

⎞⎟⎟⎟⎠ .

Equation (10) shows, that DN is a circulant skew-symmetric Toeplitz matrix and all its diagonal elements are zero,
because of

lim
x→0

S′h(x) = 0 .

For the second differentiation matrix D2
N we end up in

(D2
N) jk = S′′h(x j − xk) =

⎧⎪⎪⎨⎪⎪⎩
− π2

3h2 −
1
6 , j = k

− (−1)( j−k)

2sin2(
( j−k)h

2 )
, j �= k

, j,k = 0, ...,N, (11)

which again is a circulant skew-symmetric Toeplitz matrix. In this case all diagonal elements are constant as de-
scribed in (11).

Spectral Collocation in Clustered Grids in 1D

In this subsection we analyse nonperiodic functions p(x). Therefore we change our trigonometric approach in
equation (9) and use algebraic polynomials for the interpolation instead. This is useful, because equispaced grids
may develop instabilities at the boundaries, known as the Runge phenomenon. A way out are sets of clustered
points, distributed with the density

density ∼ N
π
√

1−x2
,

assuming a transformation of our problem to Ω = [−1,1]. As a starting point consider, that the interpolant has the
following Lagrange form

uN(x) = ωN+1(x)
N
∑

j=0

p j
(x−x j)ω ′

N+1(x j)
∈ ΠN , ωN(x) =

N
∏
j=0

(x− x j) .

For every supporting point x j there is a weight

λ j = 1
ω ′

N+1(x j)

and with

1 = ωN+1
N
∑
j=0

λ j
(x−x j)

follows the stable barycentric form

uN(x) =

N
∑

j=0

λ j p j
(x−x j )

N
∑

j=0

λ j
(x−x j )

.

All interpolants of this kind cluster at the boundaries and consequently the points occur with higher probability at
the interval endpoints.
Finally we restrict our focus to one representative, the Chebyshev interpolant. For this purpose we take the
Chebyshev-Gauss-Lobatto collocation points

x j = cos( jπ
N ), j = 0, ...,N, (12)

which are the extremas of the n-th order Chebyshev polynomials of the first kind

TN(x) = cos(N arccos(x)) .

In this case the interpolant takes the form

uN(x) = ωN+1
N
∑
j=0

p jg j(x), g j(xk) = δ jk
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with

g j(x) =
(−1) j+1(1−x2)T ′

N(x)
c jN2(x−x j)

, c j =

⎧⎨⎩ 2 , j = 0 ∨ j = N

1 , j = 1, ...,N −1
. (13)

After taking the analytical derivative of (13) we get the elements of the Chebyshev derivative matrix DN at the
collocation points

(DN)00 = 2N2+1
6 , (DN)NN = −(DN)00,

(DN)ii = −xi
2(1−x2

i )
, i = 1, ...,N −1,

(DN)i j = ci (−1)i+ j

c j(xi−x j)
, i �= j, i, j = 0,1, ...,N .

(14)

The second Chebyshev derivative matrix D2
N can be determined with the help of (14), D2

N = (DN)2. Analogously
any further higher Chebyshev derivative matrix can be computed in the same way Dν

N = (DN)ν , ν ∈ N. For further
details see [7] and [4].

Convergence Analysis

Now we are able to discuss the accuracy properties of the method. For analytic functions p we will show the
convergence O(cN), where c is an arbitrary constant with 0 < c < 1, known as spectral accuracy. For smooth
functions there will be the typical convergence rate O(Nm), m ∈ N, see [7].
These relationships can be derived by Fourier transformation for p ∈ L2

p(x)
fourier transformation

→ p̂(k) =
+∞∫
−∞

e−ikxu(x)dx

p̂(k)
inverse fourier transformation

→ p(x) = 1
2π

+∞∫
−∞

e+ikxû(k)dk,

because smooth functions have fast decaying transformations and consequently the aliasing error is small. That
means the error of the interpolant u(x) (see equation (9)) is in direct dependency of the decay behavior of the
function p̂(k), which depends on the smoothness of the function p(x) in the space domain.
For p ∈ C(d−1) and p(d) having bounded variation it follows, that p̂(k) ∈ O(k−(d+1)) for k → ∞. This justifies the
estimation of the aliasing error in the frequency domain

|p̂(k)− û(k)| =

⎧⎪⎨⎪⎩
| ∑

j∈Z\h
p̂(k + 2π j

h )| ≤ |c ∑
j∈Z\h

|k + 2π j
h |−(d+1)|

|p̂(k)| ≤ c|k|−(d+1)

≤

⎧⎪⎨⎪⎩
chd+1 ∑

j �=0
|kh + 2π j|−(d+1)|, |k| �= π

h

O(hd+1), |k| > π
h

= 0, for h → 0 and d ≥ 1

and the interpolation error in the space domain

|p(x)−u(x)| = | 1
2π

+∞∫
−∞

e+ikx p̂(k)dk − 1
2π

∫
|k|≤ π

h

e+ikxû(k)dk|

= | 1
2π

∫
|k|≤ π

h

e+ikx(p̂− û)(k)dk − 1
2π

∫
|k|> π

h

e+ikxû(k)dk|

≤ 1
2π

π
h O(hd+1) + 1

2π
∫

|k|> π
h

O(k−(d+1))dk

= O(hd)+ O(hd) = O(hd) .
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It is now possible to expand the interpolation error for arbitrary derivatives

|p(ν)(x)−u(ν)(x)| = O(hd−ν) for h → 0 and d ≥ ν + 1 (15)

if p ∈C(d−1) and p(ν) has bounded variation. For the stricter constraint u ∈C∞ we can follow

|p(ν)(x)−u(ν)(x)| = O(hm) ∀m ∈ N (16)

and if u even is an analytic function, we end up in the so called spectral accuracy

|p(ν)(x)−u(ν)(x)| = O(e−
c
h ) c ∈ R . (17)

With (15), (16) and (17) the most important convergence theorems are summarized. For more details see [7].

Boundary Conditions and Tensor Product Grids in Higher Dimensions

The Spectral Method enables the realisation of arbitrary boundary conditions as we have seen in (7). Prescribed
boundary conditions have to be included in the derivative matrix Dν

N , ν ∈ N, where ν depends on the underlying
problem. If we require a Neumann boundary condition at the left endpoint and a Robin boundary condition at the
right endpoint of the 1D Helmholtz equation, then it has the form

α ∂ p
∂n (x) = 0, x = −1, and β ∂ p

∂n (x)+ γ p(x) = 0, x = 1.

These constraints have to be directly inserted into the second Chebyshev derivative matrix of the related matrix
vector equation (8) as follows

LN = D2
N → L̃N = D̃2

N =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D̃2
N(1, :)

−−−−−−−−−−−−−−

D2
N(2 : N, :)

−−−−−−−−−−−−−−

D̃2
N(N + 1, :)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R(N+1)×(N+1)

with D̃2
N(1, :) = β DN(1, :) + γ [1 0 ... 0] ,

D̃2
N(N + 1, :) = αDN(N + 1, :) .

(18)

For boundary problems where different conditions occur at the same boundary the procedure is not straight for-
ward. For example, a least square approach or a polynomial including different boundary conditions are possible,
but then lead to different convergence rates.

Finally let us consider higher dimensional differential equations like the 3D Helmholtz equation (6). Because
of the global approach only simple geometries like cubes, spheres and cylinders are possible. To calculate in
higher dimensions we make use of tensor product grids realised as Kronecker products. The ordering of the sin-
gle matrices inside the Kronecker product depends on the underlying programing language. To end up in L̃N the
problem-specific conditions have to be incorporated in every single D2

N of the partial derivatives with the cor-
responding boundary conditions, compare (18). Obviously the degrees of freedom increase exponentially with
growing dimension d. Consequently it is getting very expensive, because the size of the matrices. The costs are
growing with Nd . For more details see the appendix in chapter 5 and [7].
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3 Numerical Simulations

Example in the Time Domain

As a first example we want to show the advantages for calculations in the time domain. Therefore we take the
geometry Ω = [−1,1] and the 1D Wave equation p(x,t)tt = c2Δp(x,t) with c = 1. The meshgrid is clustered, see
(12), with N = 100 and the initial values are given by

p(x,0) = e
−1

(x−a)2(x−b)2
+ 1

(ab) , a = −0.5, b = 0.5

with p(x,0) := 0 for |x| ≥ 0.5 .

(19)

We enforce homogeneous Dirichlet boundary conditions in the second Chebyshev derivative matrix as explained
in (18) and in the initial values. This problem gives reason to identify the simulated solution p(x,t) with the sound
particle velocity in acoustics instead of the pressure. For the second derivative in time we choose the second order
Leapfrog method. To study the behavior in the long-term integration we choose Δt = 4/N2 as a stable time step.
Because of the symmetry and the defined sound velocity c, the propagated initial values (19) overlap after 2500
time steps in the middle of Ω alternately to the original shape and to the negative original shape. To analyse the
dissipation error we calculate the energy of the solution∫

Ω
(p(x,t)t)

2 + (p(x,t)x)
2 dx

in every time step. Altogether we simulate over 500000 time steps, that means 500 periods and 1000 reflections at
the boundaries. In that long-term integration the energy (3) varies less than 3 percent. The same example in a 3D
sphere with related initial conditions gives approximately equivalent results. Although the error of the second order
time stepping method is dominant, there are no conspicuous spurious oscillations. Both of the above mentioned
difficulties are typical in finite difference and related optimized DRP schemes [6] applied to (4) and (5). By the
way for high order methods like the ADER method [5] with a low dispersion and dissipation error extensive effort
is needed to insert boundary conditions.
Consequently the combination of the spectral method for the space derivative and a low order method for the time
derivative is advantageous for long-term integrations and a low dissipation error.

Examples in the Frequency Domain

In the second example we want to analyse is the Helmholtz equation (8) for an arbitrary cuboid in R3. As a
representative we define the geometry Ω and prescribe reverberative boundary conditions

Ω = [−1,1]3, ∂ p
∂n (�x) = 0, ∀x ∈ ∂Ω,

relating to a simple room with completely reflecting walls. The analytic solution for the Eigenmodes of this
example is given by the infinite discrete spectrum

p(�x) =
∞

∑
i, j,k=1

ai jk cos(
π i
2

x)cos(
π j
2

y)cos(
πk
2

z), ai jk ∈ R

and the related Eigenfrequencies can be described with the help of the wavenumber

ki jk =
√

k2
x + k2

y + k2
z =

√
(

π i
2

)2 +(
π j
2

)2 +(
πk
2

)2, i, j,k = 1, ...,∞, ωi jk = ki jkc .

We use an in Matlab implemented Spectral Method code to solve the problem. The spectral convergence rates for
the first 4 different Eigenfrequencies can be seen in figure 1.
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In detail we see the convergence rates of the first four different Eigenfrequencies, ω111, ω211, ω221 and ω311, which
are directly related to the first four different wave numbers as shown in equation (6). The figure also represents the
exponential decrease of the relative error in dependency of the degrees of freedom growing with (N + 1)3.

102 103
10−14

10−12

10−10

10−8

10−6

10−4

10−2

100
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ω
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Figure 1: Convergence rate of the first four different Eigenfrequencies.

The third and last simulation deals with the same geometry Ω, but now we want to analyse Robin boundary
conditions (see equation (7)). Therefore we take the Eigenfrequency ω333 from the second example and compare
the related Eigenmmode including reverberative boundary conditions everywhere (see the left part in figure 2) with
the related Eigenmode including the Robin boundary condition (see the right part in figure 2) of the form

Ω = [−1,1]3, ∂ p
∂n (�x)+ 10p(x) = 0, ∀x ∈ ∂Ω. (20)

In figure 2 we can see the change of the Eigenmodeshape especially near the boundary, where we alter the rever-
berative Neumann boundary condition to the Robin boundary condition defined in (20).

Figure 2: Eigenmodeshape including reverberative (left) and Robin boundary condtions (right)
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4 Conclusions and Objectives
In the first chapter we introduced two of the main equations in aeroacoustics, the Wave equation and the Helmholtz
equation, as well as the considered combinations of boundary conditions. After that in chapter 2 we derived the
theory of the Spectral Method for equispaced and clustered grids. In the following we presented the most important
convergence theorems, how to deal with higher dimensions with the help of tensor product grids and the way to
include arbitrary boundary conditions. Finally in chapter 3 we applied the method to examples to 3D-benchmark
geometries in the time domain as well as in the frequency domain.
The simulation examples verified a very low dispersion and dissipation error without conspicuous spurious os-
cillations in long-term integrations for the Wave equation, the spectral convergence for analytic solutions and the
realisation of arbitrary boundary conditions. Obviously we cannot expand this method to complex geometries.
The global approach, in combination with the tensor product grids, only allows simple benchmark geometries like
cuboids, spheres and cylinders. Additionally it becomes very fast too expensive to calculate problems with more
dimensions and growing degrees of freedom.
Because of these results we want to use the Spectral Method to compare its accurate solutions with solutions
of Spectral Finite Element Methods in simple benchmark geometries in the future. The Spectral Finite Element
Method should use the advantages of the Spectral Method to simulate complex geometries including realistic
boundaries with wave number dependent absorptive characteristics [2].

5 Appendix
In Matlab the discrete Chebyshev Laplacian looks like

1D : LN = D2
N ∈ R(N+1)×(N+1)

2D : LN = IN ⊗D2
N + D2

N ⊗ IN ∈ R(N+1)2×(N+1)2

3D : LN = IN ⊗ IN ⊗D2
N︸ ︷︷ ︸

≈ ∂ 2
∂ x2

+ IN ⊗D2
N ⊗ IN︸ ︷︷ ︸

≈ ∂ 2
∂ y2

+ IN ⊗ IN ⊗D2
N︸ ︷︷ ︸

≈ ∂ 2
∂ z2

∈ R(N+1)3×(N+1)3
.

(21)
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