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Abstract.
We consider two models for the Salton Sea ecoepidemiology. In the first model, we assume Pelicans to
feed on both sound and infected fish sub-populations with the same functional response: the sound prey
contribute to the growth of the birds population, while the infected ones instead kill them. In the second
model we refine the choice of the feeding functional response by taking it to be ratio-dependent instead
of a simple Holling type II function. Our results indicate that a small probability for the occurrence of
the origin and the interior coexistence equilibrium is possible for the second model, while the first one
gives probability zero for these to occur. The second model therefore appears to be more realistic, since
it allows the probable existence of an interior equilibrium.

1 Background
In the Salton Sea, botulism bacteria can grow and produce toxins very easily. Fish then get infected and rise to
the water surface thus becoming an easy prey for fish eating birds, like the pelicans. In turn the latter get affected
by feeding on diseased prey and die in large numbers as well. This situation has been considered in [5] and then
modified in [4, 6, 10] to take into account different biological viewpoints. Most of the models classify the fish
as susceptible or infected, and assume that either the birds feed just on infected fish, or the predation functional
responses for the susceptible and the infected prey are different, but this may not always be realistic in the Salton
sea context. Pelicans may in fact feed on both susceptible and infected fishes with the same functional responses.

The choice of which functional response type best fits the description of a particular situation is not easy, especially
for theoretical studies. To shed some light on this question, here two new models are proposed for studying the
eco-epidemiology of infections among fish and pelicans in the unique environment of the Salton sea, in which the
prey hunting is respectively modeled as a simple Holling type II and a ratio-dependent functional response. We
compare their predictions to better understand under which assumptions the model becomes more realistic.

To describe real world situations the Holling type II functional response is the most commonly used among the prey
dependent functional responses [9], but, when predators have to share food or compete for it, a higher predator
density leads to more frequent encounters between predators, causing a fall in predating efficiency due to the
predators interference among each other. A more suitable predator-prey theory should then be based on the ratio-
dependent theory, as field and laboratory experiments support it [1, 2, 3, 7]. Its meaning lies therefore in the fact
that the per capita predator growth rate is a function of the ratio of prey to predator abundance.

2 The two new models
In the first model, we assume Pelicans to feed on both sound and infected fish sub-populations with the same
functional response: the sound prey contribute to the growth of the birds population, while the infected ones
instead kill them. Letting s and i denote sound and infected fish respectively, and p the Pelicans, we have
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The model (1) can be adimensionalized by the variable scalings s = KS, i = KI, p = P and τ = rt. In dimensionless
form it reads
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where γ1 and γ2 are the search rates, γ̃1 represents the conversion factor and γ̃2 is the death rate of the predator
population due to consumption of infected fish and with
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In the second model we refine the choice of the feeding functional response by taking it to be ratio-dependent
instead of a simple Holling type II function. We thus have
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di
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ap+ s+ i

−μi
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− ep (3)

with the same parameter interpretations as for (2).

Rescaling (3) again via s = KS, i = KI, and ap = KP, τ = rt, defining the new parameters
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we obtain
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The initial conditions are S(0) = S0 ≥ 0, I(0) = I0 ≥ 0 and P(0) = P0 ≥ 0.

3 Some analytical results
Standard analytical techniques ensure the boundedness of both systems’ trajectories. Since solutions cannot escape
to infinity, we can investigate the long term behavior of (2) and (4) by studying their equilibria.

3.1 Equilibria of the model (2)

The system (2) in addition to the origin E0 ≡ (0,0,0), has the following boundary equilibria:
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)
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,0,

(r̄1 − ẽ− ãẽ)ãr̄1
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)
and the interior equilibrium E∗ ≡ (S∗, I∗,P∗) with
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Now, E2 is feasible if λ̃ − μ̃ > 0 i.e. for λK − μ > 0; E3 is feasible if r̄1 > ẽ(1 + ã) i.e. for γ̃1 > e(1 + a
K ); E∗ is

feasible if S∗, I∗,P∗ > 0 giving A∗ < S∗ < B∗ where
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3.2 Equilibria of the model (4)

The system (4) has the origin D0 ≡ E0 ≡ (0,0,0) and the boundary equilibria D1 ≡ E1 ≡ (1,0,0),

D2 ≡
(

η
α

,
α −η
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,0

)
, D3 ≡

(
β2 −β1β2 +β1δ

β2
,0,

β2 −β1β2 +β1δ
β2

β2 −δ
δ

)
and the interior equilibrium is D∗(S∗, I∗,P∗), with S∗, I∗ and P∗ denoting the positive solutions of the algebraic
system G(X) = 0. This reduces to find a positive root S∗ of the quadratic

AS2 −BS +C = 0 (7)

where A > 0, B > 0, C > 0, since

A = αβ2(ξ1 +αξ1)+ξ2α(αβ1 +ξ1), C = ηξ2(ξ1 +ηβ1)+ξ1(δ +ξ2)(ξ1 +ηβ1), (8)

B = ηβ2(ξ1 +αξ1)+αξ2(ξ1 +ηβ1)+ξ2η(αβ1 +ξ1)+ξ1[(β2 −δ )(ξ1 +αξ1)+(δ +ξ2)(αβ1 +ξ1)].
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and

I∗ =
(ξ1 +ηβ1)−S∗(αβ1 +ξ1)

ξ1 +αξ1
, (9)

P∗ =
[(β2 −δ )(ξ1 +αξ1)+(δ +ξ2)(αβ1 +ξ1)]S∗ − (δ +ξ2)(ξ1 +ηβ1)

δ (ξ1 +αξ1)
. (10)

Here D2 is feasible for α > η ; D3 is if both conditions β2 > δ and β1 < 1 are satisfied. The interior equilibrium
point D∗ is feasible if L < S∗ < M with

L =
(δ +ξ2)(ξ1 +ηβ1)

(β2 −δ )(ξ1 +αξ1)+(δ +ξ2)(αβ1 +ξ1)
, M =

ξ1 +ηβ1

αβ1 +ξ1
.

3.3 Stability and Permanence

The following results whose proofs follow similar results in the literature, [4, 5, 6, 10] and references therein,
characterize the systems’ behavior near the equilibria.

Theorem 1. The steady state E∗ of the model (2) is always unstable.

Theorem 2. If there are two interior equilibrium points of (4) then one is a saddle and the other one is a sink.

Theorem 3. If the predation rate on the infected prey is higher than or equal to that of the susceptible prey then no
trajectory can reach the origin from the interior along a fixed direction. If the difference of the predation rates on
sound and infected prey is bounded above, β1−ξ1 < η +1 then no trajectory can reach the origin from the interior
following a spiral path.

Theorem 4. The conditions for the system (4) to be permanent are

(i) α > η ,β2 > δ ; (ii) η >
α(ξ2 +δ (1+α))

ξ2 +β2(1+α)
; (iii) α >

β2η +ξ1β2 −ξ1δ
β2 +β1δ −β1β2

.

Proof. Consider the average Lyapunov function of the form V (S, I,P) = Sα1 Iα2Pα3 with αi > 0 for i = 1,2,3. In
the interior of the positive orthant R3

0,+, we have

V̇
V

≡ α1

[
1−S− I −αI − β1P

P+S + I

]
+α2

[
αS− ξ1P

P+S + I
−η

]
+α3

[
β2S

P+S + I
− ξ2I

P+S + I
−δ

]
. (11)

As (4) is of Lotka-Voltera type, it suffices to show that the above function is positive for all equilibria (S, I,P) ∈
R3

0,+, for a suitable αi > 0, i = 1,2,3 and reduce to the following conditions corresponding to the boundary
equilibrium (S), planar equilibria, (SI) and (SP), which hold in the assumptions of the theorem:

(S) : α1 +α2(α −η)+α3(β2 −δ ) > 0; (SI) : α3(−δ +
β2η(1+α)+ξ2η −αξ2

α(1+α)
) > 0; (12)

(SP) : α2(αS3 −η − ξ1(β2−δ )
β2

) > 0.

4 Comparison technique
We compare the two models (2) and (4) to find the probability for the existence and stability of the different
equilibria of both systems in terms of all the parameter values using the Latin hypercube sampling (LHS) [8].

Table 1: The hypothetical values at which the parameters are kept fixed

Parameter r K γ1 γ2 a γ̃1 γ̃2 μ e
Value 1 45 0.2 0.02 15 0.15 0.015 0.24 0.09

The algorithm used for finding the probability for the existence and stability of different equilibria consists of the
following steps:

1. Choose the mean value and standard deviation of each parameter, the former being taken from Table 1
together with λ = 0.011, the latter being set to 0.01, so that all the parameters fall into the positive region.

2. With LHS technique draw 5000 random sets of all parameter values from the 10-dimensional parameter
space, and put in the set ‘S’ the ones satisfying the basic assumption of the model, i.e, for which γ1 ≥ γ̃1 and
γ2 ≥ γ̃2.
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3. For each sample set make the quantities dimensionless and find the values of the equilibria; from the Jacobian
determine their stability properties for both models. For each equilibrium store the number of sample sets
for which the equilibrium point is feasible and stable.

4. Let S be the set of sample values for which a particular equilibrium point exists and A ⊂ S the subset for
which it is stable; let n(S) and n(A) respectively be the number of their elements. Then find the probability
of an equilibrium to be stable by

P(A) =
n(A)

n(S)
. (13)

5. Repeat steps (2) to (4) for 10 times to find the average of all the probabilities.

5 Conclusions
Comparing the steady state stability properties of the two proposed models, the system (4) possesses two positive
equilibria, a saddle and a sink, whereas system (2) has just one, which is always a saddle and therefore uncondi-
tionally unstable. This is a radical difference, that may be used to validate them, by comparison with field data. it
is also observed that under certain conditions all the populations in the (4) may become extinct. Hence the system
(4) exbits the possibility for coexistence of the three species and as well as the possibility for total extinction.

Persistence of the three populations depends on two quantities, namely the incidence rate λ , since from (11) and
(12) it follows λ > max( μ

K , rμ
ek ), and on the death rate d of the pelican population, since from (11) we have indeed

r− ar
kθ1

< e < r. Moreover, if λ → max( μ
K , rμ

ek ) i.e. if we decrease the contact rate then the interior equilibrium

point does not persist. In such case the system tends to the infection-free equilibrium (SP), since the system is
unstable around the predator-free equilibrium point (SI). This gives then a usable criterion for possibly fighting
the disease, by acting on the appropriate model parameters.

Before reporting the final results, a few remarks are in order. Using the above procedure, note that since the
variational matrix is not defined at the origin, the probability for existence and stability of the D0 for (4) cannot be
evaluated. Moreover since (4) has two positive steady states, and we theoretically know already that whenever one
state is stable the other one is unstable, in our numerical algorithm we have added the probabilities of both positive
steady states denoting this single value by D∗. The results thus obtained are summarized in Table (2).

From Table 2 we observe that in (2) E0 and the coexistence equilibrium E∗ have zero probability of occurrence,
while (4) allows a finite probability for the corresponding coexistence equilibrium D∗. The latter model therefore
appears to be more realistic, since it allows the probable existence of an interior equilibrium. Note that in Table
2 the probabilities should not be added columnwise, as each number is the probability for the corresponding
equilibrium to be stable, calculated according to (13).

Table 2: The result obtained for the systems (2) and (4) using the LHS tecnique.

Model Equilibrium point Probability of the
equilibrium point to be stable

E0 0
E1 0.0062

System (2) E2 0.3107
E3 0.2671
E∗ 0

D1 0.001
System (4) D2 0.2344

D3 0.1620
D∗ 0.6815
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