
INTERMINGLING OF DISEASE-AFFECTED POPULATIONS

A. Costamagna, E. Venturino

Universita’ di Torino, Italy

Corresponding author: Ezio Venturino, Universita’ di Torino, Dipartimento di Matematica
via Carlo Alberto 10, 10123 Torino, Italy

���������	
����	�������

Abstract. Population models date back to the Malthus model of the early nineteenth century. Verhulst
corrected it a few decades later to avoid its only two possible outcomes, either exponential growth
or decay. His logistic correction allows the population to tend to a constant value representing the
carrying capacity of the environment for this population. The early twentieth century saw the predator-
prey works of Volterra prompted by the data on fishing in the Adriatic sea collected by the biologist
D’Ancona. The now called Lotka-Volterra model contains an interior equilibrium point which exhibits
neutral stability. It has been later modified to avoid this drawback and to make it more realistic, by
including quadratic and other nonlinear models, accounting for logistic growth or feeding saturation.
These models have also been generalized to food webs, with a top predator feeding on some other
populations, this possibly going down to several levels.

Mathematical epidemiology was founded by Kermac and McKendric who studied an SIRS (Susceptible-
Infected-Removed-Susceptible) system. A disease spreads by contact in a population of fixed size. The
major aim consists in searchig for strategies to control the disease, possibly by devising suitable vac-
cination policies. The population is divided into classes of susceptibles, infected and removed, i.e.
quarantined, individuals. The mathematical analysis sheds light on the epidemics spread, remarking
that the problem is given by the infectives, which are not identified until they show the disease symp-
toms, but in the while they have been able to infect other individuals. The most important success of this
discipline has been the decision of the WHO in 1980, by which smallpox has been declared worldwide
eradicated, and consequently compulsory smallpox vaccination has been discontinued. This decision
has been made on the basis of a suitably validated mathematical epidemics model. Specifically, it is the
basic reproduction number that tells whether a disease will ultimately propagate or not. A variety of
other models in this field of study are also possible.

Ecoepidemiology is a rather new subject of study, in that it considers interacting populations in which
an epidemic is spreading. It therefore merges characterists belonging to both types of models described
above. In most of the work so far undertaken by several researchers, various types of interactions
between the populations have been considered. The disease has always been taken to spread only in
one population, either the prey or the predators, or one of the two competing or symbiotic species
described by the underlying demographic model. Only fairly recently epidemics in both populations
have been considered.

We consider a rather complicated ecosystem in which two populations thrive, and both are disease-
affected. The epidemics can pass from one species to the other one by contact. We analytically and
numerically investigate the feasibility and stability conditions of the equilibria of the system. We also
study possible interesting behaviors of special cases of the proposed model. Some relevant findings are
outlined below.

In the proposed ecoepidemic model the disease cannot be eradicated while at the same time preserving
both populations, thus the two sound populations cannot thrive together, while this currently happens
in the corresponding purely demographic models.

The predators’ presence in the model destabilizes the prey endemic equilibrium population, although it
is not a priori easy to determine the outcome of a possible predator introduction into the environment.
The system will tend to one of its equilibria, where the disease for the prey may not or may be present,
but perhaps in such case even affect them more.

The introduction of the disease in the prey may save the sound predators from extinction; in fact preda-
tors may go to extinction in the ecoepidemic model should the prey be disease-free.

In the ecoepidemic model considered here the disease cannot disappear just from the predators. It can
vanish from the prey leaving only the sound prey as the sole subpopulation thriving in the system.
Otherwise, the disease remains endemic in the ecosystem.

1 The state of the art
Population models date back to the Malthus model of the early nineteenth century. Verhulst corrected it a few
decades later to avoid its only two possible outcomes, either exponential growth or decay. His logistic correction
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allows the population to tend to a constant value representing the carrying capacity of the environment for this
population. The early twentieth century saw the predator-prey works of Volterra prompted by the data on fishing
in the Adriatic sea collected by the biologist D’Ancona. The now called Lotka-Volterra model contains an interior
equilibrium point which exhibits neutral stability. It has been later modified to avoid this drawback and to make
it more realistic, by including quadratic and other nonlinear models, accounting for logistic growth or feeding
saturation. These models have also been generalized to food webs, with a top predator feeding on some other
populations, this possibly going down to several levels.

Mathematical epidemiology was founded by Kermac and McKendric [15], who studied an SIRS (Susceptible-
Infected-Removed-Susceptible) system. A disease spreads by contact in a population of fixed size. The major
aim consists in searchig for strategies to control the disease, possibly by devising suitable vaccination policies.
The population is divided into classes of susceptibles, infected and removed, i.e. quarantined, individuals. The
mathematical analysis sheds light on the epidemics spread, remarking that the problem is given by the infectives,
which are not identified until they show the disease symptoms, but in the while they have been able to infect other
individuals. The most important success of this discipline has been the decision of the WHO in 1980, by which
smallpox has been declared worldwide eradicated, and consequently compulsory smallpox vaccination has been
discontinued. This decision has been made on the basis of a suitably validated mathematical epidemics model.
Specifically, it is the basic reproduction number that tells whether a disease will ultimately propagate or not, [3].
The fairly recent review [10] contains the description also of a variety of other possible models in this field of
study.

Ecoepidemiology is a rather new subject of study, in that it considers interacting populations in which an epidemic
is spreading, [5, 1, 19, 20, 21, 22, 2, 11, 12, 6]. It therefore merges characterists belonging to both types of
models described above. In most of the work so far undertaken by several researchers, various types of interactions
between the populations have been considered. The disease has always been taken to spread only in one population,
either the prey or the predators, or one of the two competing or symbiotic species described by the underlying
demographic model. Only fairly recently one of the authors [23] and a very recent paper [13] have considered the
epidemics in both populations. Here we tackle again this problem considering a generalization of [23].

2 The proposed model
We consider a rather complicated ecosystem in which two populations thrive, and both are disease-affected. The
epidemics can pass from one species to the other one by contact.

Some similar models have recently appeared in the literature [23, 13]. The main difference with [13] lies in the
fact that here also logistic reproduction of the infected prey is taken into account, as well as infection of prey due
to contact with infected predators. In [13] however, predation is modeled via a Michaelis-Menten term, while here
we use just a Holling type I term. The predators in [13] become infected by feeding upon infected prey. For us the
interaction with infected prey has a dual effect on the predators, positive in that feeding avoids them to starve and
thus contributes to their reproduction, and negative in case the contact does not lead to a prey capture, but in the
course of it the sound animal possibly gets infected by the diseased one. Mortality of predators is linear in [13],
while it is given by the logistic quadratic term here. With respect to [23], note also that the simplifying assumption
that a sound prey escapes the attack of an infected predator is here removed.

We therefore consider the following model

Ṗ = P
(

r1 − P+U
K̃

− γU −βV −b1(Q+V )

)
(1)

U̇ = U
(

r2 + γP− P+U
K̃

−b2(Q+V )

)
+βPV

Q̇ = Q(−m−αU −ηV + e(b1P+b2U))

V̇ = V (−m+ηQ+ e(b1P+b2U))+αUQ

where P represents the sound prey, U the infected prey, Q the sound predators and V the infected predators. The
first equation describes the evolution of sound prey, which reproduce logistically, with net growth rate r1 and
with population pressure constant K̃−1. Note that the infected prey do contribute to intraspecific competition for
available resources. The third and fourth terms in the first equation describe loss of individuals due to the infection
process, by contact with an infected prey and an infected predator respectively. The fifth term instead accounts for
predation, by both sound and infected predators at the same rate b1. Thus we are assuming that the disease does
not affect the hunting capabilities of sick predators.

The second equation describes the infected prey evolution. They enter this class via the contacts the sound prey
have with infected prey and predators, as seen above at respective rates γ and β , see the second and last term in
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the equation, and also they can be born infected, from diseased parents, at rate r2. They also experience quadratic
mortality due to intraspecific competition with the same constant K̃−1 as for sound prey, and are subject to hunt
by both sound and diseased predators, again at the very same rate b2. Note that we consider b2 > b1, so that the
difference in predation rates expresses then the fact that infected prey are more vulnerable than sound ones, while
the disease does not affect the hunting of the predators as mentioned above.

The third and fourth equations state that predators in absence of their prey, die with mortality rate m, so that P
and U represent their only food source. The parameter e denotes the conversion factor of prey into new predators.
Finally the sound predators become infected at rate η via contacts with other infected predators, and with disease
incidence α by contacts with infected prey. Therefore hunting infected prey has both positive and negative effects
on sound predators.

3 Analysis
3.1 Boundedness

The system can be shown to be bounded, at least under reasonable assumptions, by considering its total environ-
mental population S(t) = P+U +Q+V , observing that letting M = P+U , R = Q+V , it satisfies the equation

Ṡ(t) = r1P+ r2U −mR− M2

K̃
− (1− e)R(b1P+b2U).

If e ≤ 1 the following bound follows using Gronwall’s inequality

0 < S(t) <
1

θ
(1− e−θ t)W ∗ +S(0)e−θ t , W ∗ ≡ 1

4
K̃(r1 + r2 +θ)2,

for a suitable θ , with m > θ > 0. Thus for t −→ +∞, we have S(t) −→ 1

θ
W ∗ > 0.

3.2 Equilibria and their stability

After rescaling, via p = θP, u = φU , q = ψQ, v = ωV , τ = σt, with

σ = m, φ =
γ
m

, ω =
β
m

, θ =
eb1

m
, ψ =

b1

m
and setting

A =
γ

eb1
, B =

1

K̃γ
, C =

b1

β
, D =

b2

β
, E =

α
γ

, F =
η
β

the system becomes

ṗ =
r1 p
m

−ABp2 −Bpu− pu− pv− pq−Cpv (2)

u̇ =
r2u
m

−ABpu−Bu2 +Apu− Duq
C

−Duv+mApv

q̇ = −q−Euq−Fqv+ pq+
ADuq

C

v̇ = −v+
Fqv
C

+ pv+
ADuv

C
+

Euq
C

.

There are several equilibria, whose local stability can be analysed by considering the eigenvalues of the system’s
Jacobian,⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

J11 −p(B+1) −p −p(1+C)

u(−AB+A)+mAv J22 −D
C u −Du+mAp

q q(AD−CE) 1
C J33 −Fq

v 1
C (ADv+Eq) 1

C (Fv+Eu) J44

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3)

where

J11 =
r1

m
−2ABp−Bu−u− v−q−Cv, J22 =

r2

m
−ABp−2Bu+Ap− Dq

C
−Dv

J33 = −1−Eu−Fv+ p+
ADu

C
, J44 =

Fq
C

−1+ p+
ADu

C
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Some of the equilibria are easily found and analyzed.

The origin has the eigenvalues r1
m , r2

m , −1, −1 showing its instability. Next the point Q2 = (0, r2
Bm ,0,0) has the

eigenvalues
−Br2 +Br1 − r2

Bm
, − r2

m
, −BmC +Er2C− r2AD

BmC
,

r2AD−BmC
BmC

showing stability if the following conditions are satisfied,

B(r1 − r2) < r2, r2AD < BmC.

The remaining equilibria are the following ones:

Q3 = (
r1

ABm
,0,0,0), Q4 =

(−Br2 +Br1 − r2

mA
,

Br2 −Br1 + r1

m
,0,0

)
,

Q5 =
(

0,
C

AD
,0,

r2AD−BmC
D2mA

)
, Q6 =

(
1,0,

r1 −ABm
m

,0
)
, Q7 = (p±7 ,u±7 ,0,v±7 )

the last one being actually a double equilibrium point, with components specified later.

Note that Q3 is always feasible. Its eigenvalues are

− r1

m
,−−Br2 +Br1 − r1

Bm
,−−r1 +ABm

ABm
,−−r1 +ABm

ABm

so that it is conditionally stable, namely if

r1 −ABm < 0, r1 +B(r2 − r1) < 0. (4)

Q4 is feasible when both the following conditions hold

K1 = Br2 −Br1 + r1 ≥ 0, K2 = Br1 −Br2 − r2 ≥ 0,

which imply r1 ≥ r2. Its eigenvalues are

Z
mAC

,
Z −EACK1

mAC
,

B(r2 − r1)±
√

5B2(r2 − r1)2 −4X
2m

where
Z = −mAC +A2DK1 +CK2, X = Br2

1 −Br2
2 − r1r2.

Now, Z < 0 implies the negativity of the first two eigenvalues. Also, if K1,K2 > 0 we can show that X > 0. Indeed
when Q4 is feasible from K2 > 0 it follows

0 < r1(Br1 −Br2 − r2)+ r2(Br1 −Br2 − r2) ≡ K2(r1 + r2) = X − r2
2

It then follows that X > 0.

Moreover, when Q4 is feasible also r2 − r1 < 0 must hold. In fact, summing K1 and K2 we find 0 < Br2 −Br1 +
r1 + Br1 −Br2 − r2 = r1 − r2. As a consequence the fourth eigenvalue, with minus sign, clearly has negative real
part. To have the same result also for the third one, we must have

|B(r2 − r1)| >
√

5B2(r2 − r1)2 −4X

from which
B2(r2 − r1)

2 > 5B2(r2 − r1)
2 −4X

and further
K1K2 ≡ X −B2(r2 − r1)

2 ≤ 0.

The strict inequality holds as long as the nonzero components of Q4 do not degenerate. In conclusion the only
stability condition for Q4 reduces to

Z < 0. (5)

If K1 = 0 or K2 = 0 or both, we need to require also r1 < r2.

Q5 is feasible for

G = r2AD−BmC ≥ 0. (6)
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The eigenvalues are

−G(1+C)+D(BCm+mC− r1AD)

D2mA
, −FG+EDmC

D2mA
, −BmC±

√
(BmC)2 −4DmAG

2Dm
.

If G > 0 it is easy to show that the last two eigenvalues have always negative real part, while for G = 0 the
equilibrium is always unstable. Moreover the second one is always negative, in view of (6). The only stability
condition comes then from the negativity of the first eigenvalue, a sufficient condition for which is given namely
by

BCm+mC− r1AD > 0. (7)

Q6 is feasible if
B1 = r1 −ABm ≥ 0.

Its eigenvalues are

−ABm±
√

(ABm)2 −4mB1

2m
,

W ±
√

W 2 +4B1D1

2mC

with C1 = r2 +Am−ABm, D1 = −CFC1 +DFB1 +EACm2, W = B1(F −D)+C1C. If B1 = 0 the equilibrium is
always unstable. Let us take then B1 > 0. It is easy to see that the first two eigenvalues have always nonpositive real
part. To have stability, the remaining eigenvalues must have negative real parts. This is ensured by the following
conditions: for the root with a minus sign, if C1 > 0 we need to require W < 0, D1 < 0, while for C1 < 0 the root
is always negative; for the other root with the plus sign, in case C1 > 0 the conditions are W < 0, D1 < 0, while
for C1 < 0 the eigenvalue is positive and therefore the equilibrium is unstable. In summary, this equilibrium would
be stable for C1 > 0, W < 0, D1 < 0. However, if W < 0 we find B1(F −D)+C1C < 0 implying C1C−DB1 < 0.
Since D1 = −F(CC1 −DB1)+EACm2 it follows then D1 > 0. Therefore Q6 is inconditionally unstable.

Finally the last double equilibrium is quite complicated, as the nonvanishing components are explicitly determined
by solving three quadratic equations. To study feasibility, let

R = C(C +1)(r2 +Am−AmB)+D(mA2 +C)(mAB− r1)+m2AB(A2D−C)−m2AC,

K = A2m2C(C +1)(−AD(AmB− r1)+B2m(A2D−C))+m2ACD(A2m+C)(mAB− r1)

+m2AB(A2D−C)(−D(mAB− r1)(mA2 −C)−Cr1(C +1)),

J = (A2m+C)D(B(A2D−C)−C)− (C +1)C(B(A2D−C)−A2D).

From now on we take J > 0, as conclusions similar to the ones we are about to derive can be drawn also in the
opposite case. We then have

u±7 =
R±√

R2 +4K
2mJ

C

with feasibility conditions for K < 0 given by R > 0 together with R2 +4K ≥ 0 to have real roots; for K > 0, u−7 is
always negative and u+

7 is always positive.

For

p±7 = 1−AD

(
R±√

R2 +4K
2mJ

)

positivity holds unconditionally if

∣∣∣∣AD
(

R±
√

R2+4K
2mJ

)∣∣∣∣ < 1. Conversely, there are two cases: if K < 0 we need R < 0

together with R2 +4K ≥ 0 to ensure real roots, while for K > 0, p−7 is always positive and p+
7 is always negative.

Further we have

v±7 =
(r1 −AmB)+ R±

√
R2+4K

2mJ Wm
m(C +1)

with W = A2BD−BC−C. To have positive values, we need real roots, ensured by R2 +4K ≥ 0 and in case∣∣∣∣∣R±√
R2 +4K

2mJ
Wm

∣∣∣∣∣ > |r1 −AmB| ,

if K > 0 positivity for v+
7 is ensured by W > 0 while for v−7 we need RW > 0; conversely for K < 0 we need RW > 0

for v+
7 and for v−7 we need W < 0.
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Alternatively positivity is also ensured by∣∣∣∣∣R±√
R2 +4K

2mJ
Wm

∣∣∣∣∣ < |r1 −AmB| .

In summary, we state here below the only acceptable equilibria under the assumptions J > 0 and R2 +4K ≥ 0.

For

∣∣∣∣AD
(

R±
√

R2+4K
2mJ

)∣∣∣∣ > 1, and K > 0, there are two possibilities. If

∣∣∣∣R±
√

R2+4K
2mJ Wm

∣∣∣∣ > |r1 −AmB| the feasible

equilibrium is (p−,u+,0,v+) for W > 0, while conversely it is (p−,u+,0,v−) for W < 0. Instead in case of∣∣∣∣R±
√

R2+4K
2mJ Wm

∣∣∣∣ < |r1 −AmB| and r1 −AmB > 0 both the points (p−,u+,0,v±) are feasible.

For

∣∣∣∣AD
(

R±
√

R2+4K
2mJ

)∣∣∣∣ < 1 instead, again two subcases arise. If

∣∣∣∣R±
√

R2+4K
2mJ Wm

∣∣∣∣ > |r1 −AmB|: for K < 0, and

R > 0, W > 0 the equilibria (p±,u±,0,v±) are both feasible; for K > 0 and W > 0 the feasible equilibria are

(p±,u+,0,v+) and for K > 0 and W < 0 they are (p±,u+,0,v−). If instead

∣∣∣∣R±
√

R2+4K
2mJ Wm

∣∣∣∣ < |r1 −AmB|, and

r1−AmB > 0, for K > 0 we have the feasible points (p±,u+,0,v±) and for K < 0 and R > 0 the feasible equilibria
are (p±,u±,0,v±).

For this equilibrium the stability investigation is quite complicated and is done numerically.

Figures 1-5 contain the simulations results. We respectively show sound and infected prey and total prey popula-
tions, top row, sound and infected predators and total predator populations, bottom row. From the latter it is evident
that a feasible Q7 can indeed be attained, and moreover that a bifurcation leading to limit cycles arises around it.
Figures 1 and 2 show such limit cycles with different amplitudes respectively. Taking as reference the values of
Figure 1, namely r1 = 2.8, r2 = .7, m = 0.1, A = 0.9, B = 0.3, C = 0.21, D = 0.3, E = 0.4, F = 0.52, and r1 = 12.8,
r2 = 0.7, m = 0.1, A = 0.7, B = 0.3, C = 0.021, D = 0.83, E = 0.004, F = 0.0052, we have then investigated the
influence of each parameter as bifurcation parameter. It seems that the bifurcation is insensitive only to E. Figures
3-5 contain the stable equilibrium with some components at nonzero very low level, obtained for the first value
of each bifurcation parameter. The bifurcation values are summarized here: a stable behavior is ensured below
the following values: r1 = 2.45, A = 0.71, D = 0.258, and above the following ones: r2 = 0.825, B = 0.475,
C = 0.269, F = 1.52, m = 0.35. The stable behavior however leads to equilibrium Q5 for all the parameters but B,
in which case the trajectories tend to the point Q7 = (0.0083, 0.7713, 0.0000, 22.197), showing thus that for this
bifurcation parameter the Hopf bifurcation at Q7 is obtained. The same occurs for the larger value of the parameter
D = 1.49, the oscillations seem to damp down toward Q7.

Figure 1: Limit cycles for the parameter values: r1 = 2.8, r2 = .7, m = 0.1, A = 0.9, B = 0.3, C = 0.21, D = 0.3, E = 0.4,
F = 0.52, (left) and r1 = 12.8, r2 = 0.7, m = 0.1, A = 0.7, B = 0.3, C = 0.021, D = 0.83, E = 0.004, F = 0.0052 (right)

4 Some particular cases
4.1 The demographic model

The underlying disease-free population model is the following predator-prey model

ṗ = p
( r1

m
−ABp−q

)
, (8)
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Figure 2: Oscillations damp toward Q5 for r1 = 2.45 (left) and r2 = 0.825 (right)

Figure 3: Oscillations for A = 0.71 damp toward Q5 (left) and onset of bifurcation for B = 0.475 (right); in the latter
case the equilibrium reached is Q7 = (0.0083, 0.7713, 0.0000, 22.197)

q̇ = q(p−1),

whose equilibria are the origin, always unstable in view of the eigenvalues r1
m , −1, the point M2 = ( r1

ABm , 0), stable
if

r1 −ABm < 0. (9)

Also, the coexistence equilibrium M3 = (1, r1−ABm
m ) is feasible for

r1 −ABm ≥ 0. (10)

Its eigenvalues are

−ABm±
√

(ABm)2 −4m(r1 −ABm)

2m
so that in view of (10) for the strict inequality r1 −ABm > 0 it is always stable.

If we now compare M3 with Q6, the former is unconditionally stable for r1 −ABm > 0, while the latter is always
unstable. Thus the disease introduction in the demographic system makes unstable the coexistence equilibrium,
which is instead stable in the purely demographic model. In this case the disease acts then as a destabilizing factor.
Figure 6 shows this effect.

4.2 Model without predators

The model with no predators is the following purely epidemics model

ṗ = p
( r1

m
−ABp−Bu−u

)
, (11)

u̇ = u
( r2

m
−ABp−Bu+Ap

)
,
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Figure 4: Oscillations damp toward Q5 for C = 0.269(left) and D = 0.258 (right)

Figure 5: Oscillations damp toward Q5 for F = 1.52 (left) and m = 0.35 (right)

which possesses the trivial equilibrium, unstable in view of the eigenvalues r1
m , r2

m . There are three more equilibria,

P2 =
(

0,
r2

Bm

)
, P3 =

( r1

ABm
, 0

)
, P4 =

( r1B− r2 − r2B
Am

,
r1 − r1B+ r2B

m

)
.

P2 is conditionally stable, namely for

r1B− r2B− r2 < 0, (12)

since the other eigenvalue is always negative, − r2
m . Also P3 has a negative eigenvalue, − r1

m , and is also conditionally
stable, if

r1 + r2B− r1B < 0. (13)

P4 instead is feasible only if the following conditions hold

r1B− r2 − r2B ≥ 0, r1 − r1B+ r2B ≥ 0. (14)

Note that these conditions imply r2 ≤ r1. Its eigenvalues are

B(r2 − r1)±
√

(B(r2 − r1))2 −4(r1B− r2 − r2B)(r1 − r1B+ r2B)

2m

so using (14) in case of strict inequalities it is inconditionally stable. Note that the feasibility of P4 prevents the
stability of both P2 and P3 and vice versa, the stability of at least one of the latter prevents the feasibility of P4.

On comparing P4 and Q4 the former, if feasible with strict inequalities, is always stable, while the latter is stable
only if Z < 0. Therefore introducing the predators in an environment in which the prey are subject to a disease,
the equilibrium situation reached by the system in absence of predators is disturbed by the presence of the latter.
To verify the above assertion we ran a simulation. Figure 7 contains the systems behavior when both species are
present, top, and when the predators are missing, bottom. For the parameter values

A = 0.1, B = 0.5, C = 0.9, D = 0.2, E = 1.1, F = 1, m = 0.2, r1 = 1.5, r2 = 0.1
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Figure 6: Destabilizing effect of the disease; top behavior near the unstable equilibrium Q6 = {1, 0, 7.5, 0}; left: taking
as initial conditions the point itself (1, 0, 7.5, 0); right: taking slightly perturbed initial conditions: (1, 0.01, 7.5, 0) the
system moves away from Q6; bottom behavior near the stable demographic equilibrium M3 = {1, 7.5}; left: initial
conditions on the equilibrium (1, 7.5); right: the demographic system behavior with arbitrary initial conditions: (10, 2)
returns to the equilibrium value M3.

Q4 ≡ (30, 4, 0, 0) is feasible but not stable. If we give initial conditions on the equilibrium, we find that it is
preserved, but if we slightly perturb the initial conditions (30, 4, 0.001, 0) we find that the trajectories drift away
from Q4. On the other hand, for the same parameter values, the equilibrium P4 = (30, 4), is found both starting
with P4 itself as well as from (10, 4).

4.3 Model with no disease in the prey

Another simplified situation occurs if we disregard the disease among the prey to get the model:

ṗ = p
( r1

m
−ABp−q− (C +1)v

)
(15)

q̇ = q(−1−Fv+ p)

v̇ = v
(
−1+

Fq
C

+ p
)
.

In this case there are at most four possibly feasible equilibria: the origin which is unstable, since it has the eigen-
values r1

m , −1, double; then the points

Mp2 =
( r1

ABm
,0,0

)
, Mp3 =

(
1,

r1 −ABm
m

, 0
)
, Mp4 =

(
1, 0,

r1 −ABm
mC

)
.

Mp2 is conditionally stable, in view of the negative eigenvalue − r1
m and another double one, leading to the stability
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Figure 7: Full system behavior, top; left: trajectories starting at the equilibrium Q4 = {30, 4, 0, 0}; right: trajectories
with initial conditions (30, 4, 0.001, 0); model with no predators, bottom; left: trajectories originating in P4 = {30, 4};
right: system’s behavior with initial conditions (10, 4)

condition

r1 −ABm < 0. (16)

The equilibrium Mp3 is feasible for

r1 −ABm ≥ 0 (17)

but has the eigenvalues

F(r1 −ABm)

mC
,
−ABm±

√
(ABm)2 −4m(r1 −ABm)

2m
,

so that taking the strict inequalities in (17) it is always unstable.

Finally Mp4 is feasible again if (17) holds. Its eigenvalues are

−ABm±
√

(ABm)2 −4m(r1 −ABm)

2m
, −F(r1 −ABm)

mC

and therefore the strict inequality in (17) makes it always stable.

At the equilibrium Mp4 the sound prey and diseased predators coexist. A corresponding equilibrium in the full
model, with disease also in the prey, does not exist. Thus the disease raging among the prey as well renders the
disease invasion of predators impossible, while at the same time preserving the sound prey.
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4.4 Model with no disease in predators

The model without disease in the predators is

ṗ = p
( r1

m
−ABp− (B+1)u−q

)
, (18)

u̇ = u
( r2

m
−A(B−1)p−Bu− Dq

C

)
,

q̇ = q
(

p−1+
ADu

C

)
with equilibria given by the origin, unstable in view of the eigenvalues r1

m , r2
m , −1, by the coexistence equilibrium

Sp7 = (p7,u7,q7) and by the points

Sp2 =
(

0,
r2

Bm
, 0

)
, Sp3 =

(
0,

C
AD

,
C(−BCm+ADr2)

AD2m

)
, Sp4 =

( r1

ABm
, 0, 0

)
,

Sp5 =
( r1B− r2B− r2

mA
,

r1 + r2B− r1B
m

,0
)
, Sp6 =

(
1,0,

r1 −ABm
m

)
.

Now, Sp2 has eigenvalues
r1B− r2B− r2

Bm
, − r2

m
,

r2AD−BmC
BmC

so that it is stable for

r1B− r2B− r2 < 0, r2AD−BmC < 0. (19)

Similar considerations hold for the all the other equilibria. Sp3 is feasible for H = −BCm+ADr2 > 0 with eigen-
values

−−BmC2 +CDBm+Cr2AD+CDm−D2r1A
AD2m

, −BmC±
√

(BmC)2 −4ADmH)

2DAm
so that it is stable for

−BmC2 +CDBm+Cr2AD+CDm−D2r1A > 0. (20)

For Sp4 the eigenvalues are

− r1

m
,

r1 +Br2 −Br1

Bm
,

r1 −ABm
ABm

so that stability follows for

r1 +Br2 −Br1 < 0, r1 −ABm < 0. (21)

The point Sp5 instead is feasible for

H1 = r1B− r2B− r2 > 0, H2 = r1 + r2B− r1B > 0,

from which we find r2 − r1 < 0. Its eigenvalues are

B(r2 − r1)±
√

(B(r2 − r1))2 −4H1H2

2m
, − H3

AmC

where H3 = −BCr1 + r1BA2D− r1A2D−Br2A2D+BCr2 +AmC + r2C. Stability follows for H3 > 0.

The equilibrium Sp6 is feasible for r1 −ABm > 0 and has eigenvalues

−ABmC−AmC−DABm− r2C +Dr1

mC
,

−ABm±
√

(ABm)2 −4m(r1 −ABm)

2m

so that it is stable for C(ABm−Am− r2)−D(ABm− r1) > 0.

Finally Sp7 is difficult to study. Note however that this equilibrium is not present in the original model (1). Thus if
the disease affects both populations, the predators alone cannot overcome it.
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5 Interpretation
The model (1) could be made more general by allowing disease-related mortality for both species. Without going
into details we just mention that the analysis of the latter would show that the equilibria are the same as for the
original model (1), with more complicated feasibility and stability conditions. We have shown by simulations that
system (1) exhibits limit cycles around the equilibrium with no sound predators.

The model without disease (8) has an always stable coexistence equilibrium but the corresponding point Q6 of (1) is
always unstable. Thus in the ecoepidemic model the disease cannot be removed while preserving both populations.

In the model without predators (11), i.e. the purely epidemics model obtained from (1) setting q = v = 0, the
coexistence equilibrium when feasible is always stable. On the contrary in (1) stability for Q4, the endemic prey
equilibrium, is only conditional. Thus the predators’ presence in the model has a system influence, to destabilize
the prey endemic equilibrium population. It is however not easy to determine the outcome of a possible predator
introduction into the environment, other than saying it will make the system (1) tend to one of its equilibria, where
the disease for the prey may not or may be present, but perhaps in such case even affect them more. Thus the
ecological measure of introducing a natural predator to fight the disease may not always be a sound measure,
unless conditions for the stability of the sought equilibria are also met.

The model with no disease in the prey (15) has the unconditionally stable equilibrium Mp4 with no sound predators,
which is absent from (1). Thus the introduction of the disease in the prey may save the sound predators from
extinction; this fact could instead happen should the prey be disease-free.

In the model with no disease in the predators (18), i.e. v = 0, the equilibrium with no infected prey Sp6 can be
stabilized while the disease-free equilibrium Q6 in (1) is always unstable. The coexistence equilibrium Sp7 has
no counterpart (p,u,q,0) in (1). Thus in the latter the disease cannot disappear just from the predators. Its only
equilibria with v = 0 are Q3 and Q4 with all predators vanishing or the unstable disease-free Q6.

Finally, the model without sound predators, i.e. for q = 0, shows the same characteristics as (1). Combining
with earlier findings, we observe that the disease can vanish from the prey leaving only the sound prey as the sole
subpopulation thriving in the system. Otherwise, the disease remains endemic in the ecosystem.
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