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Abstract. A simple numerical algorithm for solving the reachability problem is discussed that is aimed

at a particular class of nonlinear control systems rather than those of general kind. The algorithm is

based on using the Cauchy characteristics to construct the boundary of reachable set numerically.

Numerical examples are also given, which apply the algorithm to several three-dimensional control
systems of a selected class that are connected to robotics. These examples illustrate some possible

situations that may occur when the algorithm works successfully. Here all the considered control sys-

tems are bilinear with singularities caused by nonsmoothness of the boundary of reachable set. These

consist either of several distinct points, or of several cuts diffeomorphic to closed segments which do

not divide the set of smooth points of the mentioned boundary into separate components, or of closed

curves dividing the set of smooth points into separate disconnected components.

1 Introduction
The construction of reachable sets which consist of all states reachable through some of the available controls is a

key problem in the mathematical theory of controlled processes ([1, 2, 3, 4, 5, 6]). They allow to solve the problem
of control synthesis (see, for instance, [2])and are well studied for linear control systems. Many numerical methods

were developed for their approximation through unions or intersections of simpler standard-shape domains, such

for example, as ellipsoids ([2, 3, 7]) or parallelotopes (e.g. [8]). For nonlinear control systems the reachability

problem is much more complicated. It is known however to be reducable to appropriate problems of dynamic

optimization ([9]). Here we introduce the value function V (t,x) as being a generalized solution to a corresponding

Hamilton-Jacobi equation, such that the reachable set X [t] = X(t,t0,X0) from initial states x(t0) = x0 ∈ X0 is a

level set of V (t,x) ([9]). Hence the question under consideration is how to find the value function. This may be

done by some numerical methods for the Hamilton-Jacobi equation, for example, the level set methods ([10, 11]).

But these methods may firstly be very sensitive to the discretization rate in time and state space and even to the

choice of the corresponding grids (especially those around the nonsmooth points of V (t,x)). Secondly, we may

have too many mesh points in these grids in large spatial dimensions.

It is thus reasonable to concentrate on the reachability problem for special classes of nonlinear control systems

when it may be possible to construct more regular and simple numerical methods or even to construct some

estimates of the exact solution in analytical form. As for the second route, it may be possible to apply a comparison
principle for the Hamilton-Jacobi equation ([12]) that leads to internal and external estimates for the reachable sets.

But it may be difficult to decide what form of these estimates to seek.

In this paper we discuss a simple numerical algorithm for solving the exact reachability problem that is aimed at a

particular class of nonlinear control systems rather than those of general kind. Besides that, we present numerical

examples, applying the algorithm to several 3-dimensional systems of a selected class.

2 General assumptions
Consider the next system linear in the control parameters:

ẋ(t) = G(x(t))u(t), x(t) ∈ Rn, u(t) ∈ P ⊂ Rm, t ∈ [t0,T ]. (1)

Here we assume that the matrix-valued function G : Rn → Rn×m is smooth enough and that P is a strongly convex

compact with smooth boundary and zero in its interior, for instance, an ellipsoid. We assume also that m > 1,
hence,that the boundary of P is connected. We then consider the Hamiltonian H(x,s) = max{(GT (x)s,u) | u ∈
P}, so that the value function V (t,x) solves the Cauchy problem for Hamilton-Jacobi-Bellman equation

∂V (t,x)/∂ t + H(x,∂V (t,x)/∂x) = 0, V (t0,x) = ‖x− x0‖2 (2)
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determining further the reachable set X [t] = X(t,t0,x0) as X [t] = {x : V (t,x) ≤ 0} ([9]). We assume also that X [t]
is of full dimension, i.e. its interior points are dense in X [t]. This property may be established through methods

of differential geometry, see [13]. However, if for the given control system this property is not fulfilled, then the

methods of [13] allow in some cases a transformation of the phase coordinates that decomposes the state into

“controllable” and “non-controllable” parts. The reachability problem may thus be reduced to the treatment of the

“controllable” part, so that the reduced problem would meet the assumption of the above.

Further on, write down formally the Hamiltonian system of ODEs determining the Cauchy characteristics for (2):

ẋ(t) = ∂H(x(t),s(t))/∂ s, ṡ(t) = −∂H(x(t),s(t))/∂x, x(t0) = x0, s(t0) = s0 �= 0. (3)

If GT (x0)s0 �= 0, hence, H(x0,s0) > 0, then due to the above assumptions H(x,s) is differentiable along the

unique trajectory x[t] = x(t,t0,x0,s0), s[t] = s(t,t0,x0,s0) of (3), determining, moreover, the corresponding open-

loop control u[t] = arg max{(GT (x(t))s(t),u) | u ∈ P}. In this case the equations (3) coincide with those of the

L.S.Pontryagin’s maximum principle under condition x[t] ∈ ∂X [t] ([14]) when x[t] is attained within the non-
singular mode. On the other hand, if GT (x0)s0 = 0, hence, H(x0,s0) = 0, then for any pair {x(·),u(·)} that

satisfies Pontryagin’s maximum principle with some s(·), s �≡ 0, we have H(x(t),s(t)) ≡ 0 for all t ∈ [t0,T ], more-

over, H(x,s) is non-differentiable at (x(t),s(t)) and the equations (3) are invalid. This case corresponds to the

singular mode of the maximum principle, when characteristics are not applicable. We further denote the set of

states x(t) attained by all singular modes as Z[t] = Z(t,t0,x0).

Our additional assumption on the control system (1) under consideration is that Z[t] lies in some manifold of

dimension less than n− 1. Then, since X [t] is assumed to be of full dimension, the dimension of ∂X [t] will be

n−1. Hence, from the numerical point of view, we may ignore set Z[t] when calculating ∂X [t]. The fulfillment of

this assumption may be checked directly by analogy with [15]. But even if the accepted assumption is not satisfied,

it is may be possible to regularize the control system (for instance, by introducing additional control parameters

with small absolute values), so that the regularized system would meet the assumption.

Further on we consider only non-singular modes of the maximum principle and the corresponding trajectories

x[t] = x(t,t0,x0,s0) and s[t] = s(t,t0,x0,s0). Due to the positive homogeneity of H(x,s) with respect to s it is

convenient to take s0 ∈ S0 = {s : H(x0,s) = 1}. It is known however, that for nonlinear systems the inclusion

x[t] ∈ ∂X [t] is true not for all s0 ∈ S0. This is so since here the maximum principle of L.S. Pontryagin is just

a necessary, but not a sufficient condition of optimality. Thus, the problem of finding ∂X [t] may be reduced to

the selection of set S̄0[t] ⊆ S0 such that ∪{x(t,t0,x0,s0) | s0 ∈ S̄0[t]} = ∂X [t] for given t ∈ [t0,T ]. The algorithm

discussed in this paper produces set S̄0[t] numerically.

Describe the additional properties necessary for this algorithm. For all the given examples these properties are

checked directly. First, it is necessary that ∂X [t] would be connected. This means there are no cavities inside the

reachable set. Second, S̄0[t] should contain a finite number of connected components, moreover, we have a finite

set of “start points” Ŝ0[t] containing at least one point from each of the components. All these “start points” are

figured out for each of the control systems under consideration through some specific properties of these.

3 Description of the algorithm
Now let us describe the idea of the algorithm. From the smoothness of x(t,t0,x0,s0) in s0 it is reasonable to expect

that ∂X [t] is a locally smooth manifold of the dimension n−1. But the issue is that ∂X [t] may contain singularities
(see, for instance, [16]). These singularities may appear in two ways. The first is that the rank of ∂x(t,t0,x0,s0)/∂ s0

(which in in regular points is equal to n− 1) may become less than n− 1. This is an analogy of the notion of

conjugate locus known in variational calculus. Secondly, there may be two points s0,1 �= s0,2, s0,1,s0,2 ∈ S0, such

that x(t,t0,x0,s0,1) = x(t,t0,x0,s0,2). This is analogous to the cut locus from variational calculus. Both conditions

are stopping conditions for the numerical algorithm. For simplicity we further consider only the case n = 3, though

the algorithm may be extended to other cases. Suppose we have the set A⊆R2 and the smooth mapping σ : A→R3

such that rank(∂σ(α)/∂α) = 2 and σ(A) = S0. Suppose also that the finite set Â = {α̂1, . . . , α̂K} is given such

that σ(Â) = Ŝ0[t]. Then the algorithm needs to find the set Ā ⊆ A, Â ⊆ Ā, such that σ(Ā) = S̄0[t]. Consider the

functions ᾱk(ξ ,η) : [0,2π ]× [0,ηmax] → A, k = 1, . . . ,K, continuous in (ξ ,η) such that

• ᾱk(ξ ,0) = α̂k;

• Āk(η) = ∪ξ∈[0,2π ]{ᾱk(ξ ,η)} is a closed Jordan curve, in particular, ᾱk(0,η) = ᾱk(2π ,η);

• cl(int Āk(η1)) ⊆ cl(int Āk(η2)) for each 0 ≤ η1 ≤ η2 ≤ ηmax;

• if one of stopping conditions is fulfilled at ᾱk(ξ̄ , η̄) for given ξ̄ ∈ [0,2π ] and η̄ ∈ [0,ηmax], then ᾱk(ξ̄ ,η) =

ᾱk(ξ̄ , η̄) for all η ∈ [η̄ ,ηmax].

Besides, int Āk(η1)∩ int Āl(η2) = /0 for any k, l = 1, . . . ,K, k �= l, and for any η1,η2 ∈ [0,ηmax]. We name the union

Ā(η) of closed Jordan curves Āk(η) as iteration in A and η as iteration parameter. Thus, the desired set Ā would

be represented as Ā = ∪{Ā(η) | η ∈ [0,ηmax]} while the boundary of the reachable set ∂X [t] = ∪{Ξ(η) | η ∈
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[0,ηmax]} where Ξ(η) = x(t,t0,x0,σ(Ā(η))) is an iteration in the state space. Stopping conditions are fulfilled

at α = ᾱk(ξ̄ , η̄) if and only if either rank(∂x(t,t0,x0,σ(α))/∂α) < 2 or there exists a point (l,ξ ,η) �= (k, ξ̄ , η̄),

l = 1, . . . ,K, 0 < η ≤ η̄ , such that x(t,t0,x0,σ(ᾱk(ξ̄ , η̄))) = x(t,t0,x0,σ(ᾱl(ξ ,η))).

In reality, the algorithm approximates the iterations mentioned above by unions of polygonal curves depending

on parameter η with values from some discrete grid, such that both nodes within iterations in the state space and

nodes in consecutive iterations in the state space are not closer than some fixed nominal step Δx > 0 trying to make

the grid on ∂X [t] as uniform as possible. This is important not only to make the grid have less number of points,

but also for the stability of the algorithm.

4 Numerical examples
In this section we consider examples for several three-dimensional control systems to which the algorithm was

applied. The equations of these control systems are connected to robotics and were taken from [17].

4.1 Example 1

This control system may be treated as projection of three-input second-order controllable system from [17, p. 362]:

ẋ1(t) = u1(t), ẋ2(t) = x1(t) ·u2(t), ẋ3(t) = u3(t), u2
1(t)+ u2

2(t)+ u2
3(t) ≤ 1, t ∈ [0,T ]. (4)

We take σ1(α) = cos(α1) ·sin(α2), σ2(α) = sin(α1) ·sin(α2)/x0
1, σ3(α) = cos(α2), Â = {(0,−π/2)T ,(0,π/2)T}.

Figure 1: The reachability set for (4) (left) and the set Ā of parameters α generating ∂X [t] for (4), lines correspond

to separate iterations Ā(η) (right); both the set Ā and the set of smooth points of ∂X [t] are connected, the singularities

detached by the bold lines are diffeomorphic to closed segments

4.2 Example 2

The equations of control system are are obtained by projection of two-input two-chained system from [17, p. 392]:

ẋ1(t) = u1(t), ẋ2(t) = x1(t) ·u2(t), ẋ3(t) = x2(t) ·u2(t), u2
1(t)+ u2

2(t) ≤ 1, t ∈ [0,T ]. (5)

We determine σ1(α) = sin(α1), σ2(α) = α2, σ3(α) = (cos(α1)− x0
1 · sin(α2))/x0

2, Â = {(−π/2,0)T ,(π/2,0)T}.

Figure 2: The reachability set for (5) (left) and the set Ā of parameters α generating ∂X [t] for (5), lines correspond to

separate iterations Ā(η) (right); the set Ā consists of two components, hence, the set of smooth points of ∂X [t] is divided

into separate disconnected components by the closed curve containing singularities (see the bold line)

4.3 Example 3

Consider the following three-dimensional cascade control system ([16, 17]):

ẋ1(t) = u1(t), ẋ2(t) = x1(t) ·u2(t), ẋ3(t) = u2(t), u2
1(t)+ u2

2(t) ≤ 1, t ∈ [0,T ]. (6)

For this system the reachability set is constructed in [16] in analytical form, but it may be interesting to observe

how the numerical algorithm discussed in this paper deals with this system without regard for its specific properties
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and the parametrization of characteristics inherent to it obtained in [16]. We define σ1(α) = sin(α1), σ2(α) = α2,
σ3(α) = cos(α2)− x0

1 ·α2, Â = {(π/2,0)T}.

Figure 3: The reachability set for (6) and the set Ā of parameters α generating ∂X [t] for (6), lines correspond to separate

iterations Ā(η) (right); the set Ā is connected, the singularities of ∂X [t] consist of two distinct points (the second point is

invisible because it is on the reverse side of ∂X [t])

5 Conclusion
The perspectives for the suggested simple numerical algorithm are as follows. Firstly, in contrast with numerical

methods which require values of V (t,x) for preceding instnts of time, here it is not necessary to know the approxi-

mations of ∂X [t] for such instants. In fact, the Hamiltonian system (3) may be integrated numerically immediately

up to the necessary time. Secondly, ∂X [t] is parameterized by n−1 parameters while V (t,x) is by n+1 parameters

(this is crucial for large values of n). Thirdly, if ∂X [t̄] is already calculated and we need to calculate ∂X [t] for val-

ues of t close to t̄ (as it is for the backward reachable set used in the control synthesis problem), then we need not

calculate this set afresh, but may use the already calculated information. Fourthly, the algorithm may be extended

to calculation of only the projection of the reachable set on a linear manifold of dimension less than n rather than

the whole reachable set. The difficulty of dimensionality may thus be softened by this move. The obvious defect

of the suggested algorithm is the abundance of properties that must be checked in advance which may be rather

difficult. But in practice it turns out that this defect may be overcome when dealing with specific examples, while

“universal” algorithms may often implicitly presume some of the mentioned properties to be true.
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