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Abstract.
In this research, Flexible Manufacturing Systems(FMS) are studied. They are modeled as closed queue-
ing networks with multiple chains and finite buffers with production blocking. The effects of limited
buffer capacities on the performance of the customer chains as well as the system are investigated. It has
been shown that some customer classes of finite networks can deliver higher throughput performance
compared to identical networks with unlimited capacities. Several simulation studies are conducted to
comprehend the causes of effects.

1 Introduction
Flexible Manufacturing Systems(FMS) are complex manufacturing systems where multifunctional computerized
machines are united together with a material handling systems. Their costly investment requirement necessitate
the study of system performance under operating conditions.

FMS systems are usually modeled as multi-chain closed queueing networks with a central server configuration[28][18][26].
Multi-chain queueing networks consist of different classes of customers which vary in their routes, service require-
ments, costs, waiting spaces etc.

With respect to single class models, multiple class models involve

• Performance measures of the individual customer classes

• Requirements of multiple sets of input parameters

• Difficult data collection due to the necessity of multiple sets of data

• More complicated solution techniques and the need for more computing resources

It is essential to study such models since they provide more accurate results for systems where jobs exhibit sig-
nificantly different behavior. For instance, even without blocking, the multi-class networks may lead to inefficient
systems and fail to deliver the maximal production rate.

In addition to other identified sources of instability, the blocking due to finite capacity of the workstations can be
a destabilizing factor. In finite open multi-class networks, it has been shown through examples that FCFS, as well
as other scheduling policies such as last come first serve (LCFS), earliest due date (EDD) and shortest remaining
processing time (SRPT), can become unstable.

We consider closed queueing networks with multiple customers. Further, we assume that the stations may have
limited waiting spaces and a customer can be blocked after service. With a FCFS queueing discipline, these
networks may have the following surprising behaviors:

• Increasing the buffer space of a work station may not lead to better performance for the whole system

• The throughput of a class may decrease significantly even though its chain does not have a blocking station
on its route.

We analyze these characteristics that arise due to blocking for several types of systems.

2 Background
2.1 Notation and Basic Definitions

First, we introduce the following notation that will be used in the description of multi-class queueing networks:

R := The number of job classes in the network.

M := The number of stations in the network.
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�N := The population vector (�N = (N1,N2, . . . ,NR) where Nr is the number of jobs of the rth class in the network,
r = 1, . . . ,R.

G(R,M,�N) := The closed network with finite number of R classes, M stations and �N population

�n := The state of the network, (�n = (n1,n2, . . . ,nR)).

μir := The service rate of the rth class of customer at center i .

μir( j) := The service rate of the rth class of customer at center i when there are a total of j customers at the
center( j = ∑R

r=1 nr).

μir(�n) := The service rate of the rth class of customer at center i when the center is in state�n.

λr(�n) := The throughput of class r customers when the network is in state�n.

Wir(�n) := The mean response time of a class-r customer at service center i when the network is in state�n.

Qir(�n) := The mean number of class-r customers in center i when the network is in state�n.

πi( j|�n) := The probability of j customers at center i when the network is in state�n.

πi(�nk|�n) := The probability of�nk customers at center i when the network is in state�n.

Pi(�n) := The blocking probability of center i when the network is in state�n.

Vir := The rth class customer visit ratio to the ith node.

�1r := Unit vector in the rth direction (01, . . . ,1r, . . . ,0R).

Ki := The buffer space of node i.

2.2 Model Description

We consider a multi-class queueing network with M work stations and R classes. The topology of the system is
central-server. We, further assume:

• Fixed number of class-r customers, Nr

• Customers do not change classes

• Limited waiting spaces with BAS mechanism

• Single server nodes with FCFS queueing discipline

• Service rates of workstations are identical for each class

• Classes share waiting spaces

• The routing of a class is deterministic

2.3 Literature Review

Exact solution techniques exist for a class of separable networks [4], also referred as BCMP type networks. For
these class of networks, the steady-state joint probability has a product form which can be expressed as in (1).

π(�n1, . . . ,�nM) =
1

G(�N)

M

∏
i=1

fi(�ni) (1)

where:

�N is the number of jobs/customers in the various chains, known as the population vector (�N = (N1, . . . ,NR)),

R denotes the number of chains,

M is the number of stations,

�ni is the state of the ith node (�ni = (ni1, . . . ,niR), i = 1, . . . ,M )

G(�N) is normalizing constant and defined as

G(�N) = ∑
∑M

i=1 �ni=�N

M

∏
i=1

fi(�ni)

For BCMP type networks, the sum of class−r jobs should be constant at any time. In closed queueing networks,
if there is no class switching allowed, the number of chains are equal to the number of classes. Throughout the
paper, we do not allow class switching, hence, we use the terms class and chain synonymously.
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Some well-known product-form nodes are single-server and multiple-server first-come-first-served (FCFS), pro-
cessor sharing (PS), infinite server (IS), and single server last-come-first-served (LCFS) queues. For nodes with
FCFS queueing discipline, the service time distribution must be an exponential distribution that is identical for all
classes.

There are efficient methods for analyzing the performance measures of product-form multiple-class closed queue-
ing networks. To start with, the convolution algorithm, first proposed by Buzen [8] for single-chain networks and
extended by Reiser [22] for multiple chains, is an efficient means of obtaining the normalization constant. Other
performance measures such as mean queue lengths, server utilizations, mean waiting times and throughput are
computed using the normalization constant. Another significant algorithm whose steps are described in latter sec-
tions is Mean Value Analysis (MVA) [23]. MVA can be applied to networks with multiple-chains and is based on
the same fundamentals such as the Arrival theorem and Little’s equation.

Another technique for closed product-form queueing networks is the Recursion by Chain Algorithm, or so called
RECAL, developed by Conway and Georganas [9]. RECAL is well suited for networks with a large number of
job classes but a small number of nodes. The idea of the RECAL is to break down each chain into constituent
sub-chains so that each has a population of one. Then, the recursive expression relates the normalization constant
of a network with r chains to those of a network with (r−1) chain network.

The above mentioned algorithms calculate performance measures exactly. However, the memory requirements and
computation time grow exponentially with the number of job classes in the system. For computationally difficult
product-form closed networks, approximation methods such as Self-Correcting Approximation Technique [19],
Summation Method [7], and Bottleneck Approximation [6] are also cited in literature.

Multiple class closed queueing networks with blocking have been shown to exhibit product-form solutions only in a
few special cases: networks with reversible routing and self-dual networks. A survey and analysis of product-form
queueing networks having finite capacities with various blocking mechanisms can be found in [2].

A finite multi-class closed queue with blocking-after-service (BAS) has been shown to have product forms in the
following cases:

• The network consists of only two nodes [20].

• The total number of customers is one more than the minimum buffer space [20].

• The central server type network in which nodes have either FCFS or LCFS-PR with the condition that the
neighbors must be priority or infinite servers.[1].

Unfortunately, other than these special cases closed queueing networks under the BAS mechanism can not be
shown to have product-form distributions. Non-product-form types of networks are normally studied approxi-
mately. Two main approaches have been followed in the development of approximation methods for closed queue-
ing networks. The first group of algorithms are heuristic extensions based on MVA. The generalization of the
MVA algorithm to FCFS queues with class dependent service times with single servers was studied by Bard [3]
and Reiser [21] and with multiple servers by Hahn [13] and Schmidt [25], to name a few.

The principle of the second group approaches is to approximate the performance of the original networks by that
of an equivalent product-form network. An approximation for networks with general service times by Baynat and
Dallery [5] can be categorized in this group.

Multi-chain closed queueing networks with finite buffers have not frequently occurred in the literature. Liebeherr
and Akyildiz [17] investigated the deadlock properties of such systems assuming each node keeps separate buffers
for jobs from different routing chains. They presented an optimization algorithm for finding deadlock-free capacity
assignments with the least total capacity.

In this study, we analyze closed queueing networks with multiple chains. We consider systems with finite capacities
and present an approximation method based on the Mean Value Analysis(MVA) algorithm. The basic idea is to
utilize Bard’s [3] approximation for networks with different service times at FCFS nodes along with our estimation
of effective service rates and the blocking probability.

3 Behaviors of Multi-class networks with finite buffers
In this section, we give some insights into the behavior of multi-class networks and how these systems are affected
by problem parameters.

3.1 Benefiting from Finite Capacity

An interesting, observation in closed finite queueing networks with multiple customer classes is that increasing the
buffer size of a workstation may not necessarily lead to better performance of the system. So far, as conjectured
and generally believed, the throughput of a finite capacity network is less than or equal to the same network without
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Figure 1: A closed queueing network with three service centers and two classes

blocking. That may be the case in a single class network, however, the customers in multiple class networks can
benefit from finite capacities and may have higher throughput than their infinite node capacity counterparts.

In this context, we propose the following result for a multiple class closed queueing network with FCFS queueing
discipline:

Theorem 1. A multi-class closed queueing network with infinite node capacities does not provide an upper bound
for the throughput of the customer classes as the same network with finite node capacities.

Proof: It is sufficient to show this property through an example. Consider the multi-class network in Figure 2 with
M = 3 nodes and R = 2 classes and N1 and N2 customers in each class. After receiving service at the first node
class-1 customers proceed node-2, while second class customers proceed to node-3. Further, assume that service
rates are independent of classes (μir = μi) with μ3 � μ2 � μ1.

In this network, node-1 arises as a bottleneck station. With a FCFS queueing discipline, entering customers from
their respective chains will move towards having service and will be sequentially queued at this station. Arriving
from a slower stream, class-1 customers will only find waiting spaces towards the back of the queue. For μ3 large
enough, μ3 � μ2, class-1 customers will receive service after all class-2 customers have finished. The residence
time of class-1 customers at the first station, W11, would be:

W11 > N2
1

μ1

Now, assume we impose a finite capacity on node-1 with K1. Finite space will limit the number of class-2 customers
waiting in the queue. Since blocking will also occur on a FCFS basis, class-1 customers will be able to find waiting
spaces in between class-2 customers. The residence of class-1 customers at node-1, W11, would be in the interval
of :

N2
1

μ1
> W11 > (K1 +1)

1

μ1

Specifically, for N1 = 1, the residence time at node-1 for class-1 customers would be in the non-blocking case:

W11 = N2
1

μ1
+

1

μ1

and in the blocking case:

W11 = (K1 +1)
1

μ1
+

1

μ1

For K1 + 1 < N2 the residence time of class-1 will be lower than the infinite network which will result in higher
throughput for this class.

3.2 Detriments of Finite Capacity

Another behavior which contrasts with the previous property is the negative effect of finite buffers on chains. Due
to the interactions of customers arising from use of finite capacities, the performance of a class can be affected
significantly, although, there is no blocking station on its route. This is intuitively understandable, especially in a
network with single servers, FCFS scheduling and BAS. Once a customer is blocked by its downstream station, it
continues to occupy the upstream station. During this time, the server cannot provide service to other customers
although it is idle. The blocked customer functions as a barrier forcing the customers in the queue to wait longer.

4 Design Experiments
In previous sections, we have presented interesting effects of finite buffers on class outputs in multiclass closed
queues. Nevertheless, the question of how these effects occur remains to be answered.
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Figure 2: A closed queueing network with three service centers and two classes

Number of Service Buffer
Customers Rates Sizes

N1 N2 μ0 μ1 μ2 B0 B1 B2

5 8 1 3 5 ∞ ∞ ∞
Table 1: Default control values of simulation experiments

We focus on a small queueing model with two-classes and three stations (Figure 2), and investigate the effects of
the system design parameters on the throughput of the classes.

Our main purpose is; to determine the causes of effects by thoroughly analyzing a small system. Afterwards, using
these outcomes, we intend to derive categorical results for a larger system. For this purpose we conduct several
simulation experiments. Although, every instance of the experiments can be solved by a Markovian Chain ap-
proach, there is no-known product form formulation for this system and the population vector grows exponentially
with the number of customers. Hence, determining the steady-state probabilities may not be feasible. Moreover,
since we are only interested in calculating throughput rates and conduct a high number of experiments, we prefer
the simulation approach.

Simulation experiments are conducted with ARENA version 8.0 with 10.000 time units after a 1000 warm-up
period and 20 replications. System throughput of classes, λ1 and λ2, are the primary measures. The standard
deviation of simulations are very small, on the order of [.0013,.0091] for the throughput values, and omitted for
presentation purposes.

We have carried out several simulation experiments with varying buffer sizes, customer quantities and service rates
as control parameters of classes and stations. For a reference the default values are displayed in Table 1. Just to
give insight, we include a comparison study of buffer sizes of Station-1 and Station-2.

4.1 Simulation Results for Buffer Sizes

In these first set of experiments (Figure 3-5), the throughput values are examined against the change of buffer sizes.
Other model parameters are as in Table 1.

In Figure 3, B0 and B1 are the control variables. While, B0 is varied from 1 to 12, B1 is increased from 1 to 7.
Consequently, 84 simulation experiments are run and resultant throughput space have been shown. As seen in the
figure, in some cases the throughput values are not available due to deadlock of the system. For feasible values,
the throughput of class 2 increases with the increase in B0. At the same time, class 1 benefits from limited buffer
size of B0 and rises for lower values of 6. This gain of class 1 can be as much as %23.8 compared to the value in
no blocking case. We also would like to note that B1 has limited or no effect,-other than causing deadlock- in this

Figure 3: Bu f f er0 vs Bu f f er1
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Figure 4: Buffer0 vs Buffer2

Figure 5: Buffer1 vs Buffer2

system setting.

Similar observations can be deducted from Figure 4. Class-1 customers benefit from limited buffer sizes of B0.
The achievable throughput is same as Figure 3.

In Figure 5,the influence of B1 and B2 are plotted keeping other parameters at their default values. However, the
throughput space of class-1 and class-2 are planar, and we can presume that these buffers do not have significant
effects.

Overall, the shared buffer of B0 arises as the most influential buffer amongst all.

4.2 Simulation Results for the Number of Customers

In this section, we examine the behavior of the blocking network with different number of customers(Figure 6).
The number of customers of class-1 and class-2 are varied in 64 simulation experiments while B0 is the blocking
buffer with a value of 1. For a comprehensive comparison we plot the non-blocking network, B0 = ∞, with the
same parameters.

Interestingly, the throughput space of classes are planar in the system with limited buffers. Moreover, both classes
may benefit from blocking effect. If their throughput is low, i.e. they have less customers, the throughput gain
is greater. The throughput gain for class-1 is the highest in combination of N1 = 1,N2 = 8 with %148 relative
to the non-blocking case. Similarly, class-2 customers can have a %176 higher throughput in combination of
N1 = 8,N2 = 1 if limited buffers are employed.

4.3 Simulation Results for the Service Rates

In this section, we study the effect of service rates (μ0,μ1,μ2) on the blocking network (Figure 7-9). We have
set the buffer size of station-0 to 1 and examined the class throughputs. To achieve a significant divergence, 7
level of control parameters on service rates are selected as .33, .50, 1.00, 1.50, 3.00, 5.00, 10.00. The stations are
compared in dual in 3 cases where each consists of 49 simulation experiments. The remainder of the parameters
are at their default level. The corresponding outcomes of throughput rates are presented whereas the same network
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Figure 6: Class1 vs Class2

Figure 7: μ0 vs μ1

Figure 8: μ0 vs μ2
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Figure 9: μ1 vs μ2

with unlimited buffers are also plotted.

The phenomenon of finite system performing better than unlimited buffer case can also be observed in these 3-
graphs.

5 Conclusion and Future Research
In this research, we have investigated the behavior of multi-class finite closed queueing networks and showed that
they can benefit from existence of finite buffers. On the other hand, we also have illustrated that finite capacities
may significantly reduce the performance of the system if not carefully positioned.

As demonstrated in numerical experiments, the relative percentage difference of finite networks compared to non-
blocking ones can be very high. Estimating the performance of the finite buffer queueing from non-blocking
network is not suitable, and hence, finite networks require a particular treatment.

There are several important applications of such networks: packet-switching communication networks with differ-
ent types of packets and priorities, job-shop manufacturing systems and multi programmed computers systems, to
name a few.

The findings here open new areas of study in closed queueing networks. One possible area is that of studying the
achievable performance bounds of customer chains. Since, the classes may exceed their non-blocking network
counterparts in performance they do not provide an upper threshold anymore. Specific calculations and distinct
algorithms should be derived for finite buffer systems in order to predict their performance.

Another area is optimization. While optimizing the system performance or/and determining the number of cus-
tomers in each chain, the influence of the finite buffers may contribute to the objective function. Hence, the finite
buffer factor should be included in decision process.
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