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Abstract. In this paper difference equations arising from process engineering and financial appli-
cations are presented and investigated. Starting out of a stochastic model we introduce the z trans-
form of the sequence of the appropriate probabilities. We present the difference equation satisfying 
by the function, we prove the existence and uniqueness of the solution, and we show some proper-
ties of the solution. In special cases we give the explicit solution as well. Finally computational re-
sults will be presented. 

1 Introduction 
Intermediate storages play important role in process engineering systems. They connect process subsystems with 
different operational characteristics. It is an important question how large the intermediate storage should be in 
order to avoid overflow. In order to find the appropriate size of storage it is worth investigating the change of 
amount of material in the function of the time.  
In most of practical problems the process is rather stochastic than deterministic. Hence the appropriate size can 
be determine to a given reliability level. The change of amount of material is stochastic process and we would 
like determine the distribution of its maximum value. In batch/continuous systems the distribution function of 
the maximum value of material in the storage satisfies such integral equations which can be transformed into 
integro-differential or differential equation with delay or advances in their arguments [3,4,5]. In this paper we 
investigate a problem in discrete stochastic model and we deal with the probabilities of that the maximum value 
of the change of amount of material exceed a level in the function of the level. As a generalization, we introduce 
the z transform of an appropriate sequence, we prove the difference equation for it, we analyze the equation, we 
investigate the limit properties of the solution, and in some cases we give the explicit solution. Substituting the 
value 1 into the solution and into its derivative we get the probabilities of overflowing and the expected time of 
overflow, respectively.  This model can be applied as a discrete version of a risk process, as we will refer to it on 
the appropriate points of our paper.  
The structure of the paper will be the following: first we present the problem and the model which will be inves-
tigated, we introduce notations. Then using the methods of probability theory we prove the difference equation 
satisfied by the z transform of the overflow probabilities. We prove the existence and the uniqueness of the solu-
tion, we prove that the solution tends to zero and we give some explicit solutions. Using explicit solutions we 
present an example in which we determine the size of storage for a given reliability level. 

2 The model 
Let consider the following processing system. Some of batch units produce material and some of other units use 
them at different time. The amount of material produced is filled into the intermediate storage which stores it and 
the material is withdrawn from it when it is needed for the output subsystems. The filling time points are sup-
posed to be random.  

Figure 1. Intermediate storage connecting two batch subsystems of a  
processing system 
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Let 00 =t , and let us denote the times between the consecutive fillings by it  (i=1,2,3,…), which are nonnega-
tive, independent, identically distributed random variables. The counting process { }0:)( ≥ttN  denotes the num-
ber of fillings up to time t, and is defined as 
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The amount of the k-th filling is denoted by ...2,1, =kYk , and variables ...2,1, =kYk are also nonnegative, 

independent and identically distributed random variables.  Also, we assume that )(tN and { }∞
=1kkY  are inde-

pendent.  

At this point we note that similar model is used in insurance mathematics to investigate the ruin probability. In 
insurance mathematics surplus corresponds to the material, the payment for the insurance company is described 
by a deterministic process and the claims arising from damages are random. 

The amount of material being in the intermediate storage can be expressed as  

∑
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k
k ctYztV , t≥0 (2.1) 

where 00 ≥z  is the initial amount of material.  
If the size of the storage is Sz , then we avoid the overflow if SztV ≤)(  for any 0≥t , which means that 
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If we investigate probability of overflow, we investigate the probability 
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This probability is often investigated in insurance mathematics as ruin probability. )(tN  can be interpreted as a 
claim process, kY  are interpreted as claims, c is the rate, and x is the initial surplus.  
If distributions of random variables kt  and kY  are continuous, the integral equation for )(1 xψ  in special cases is 
proved in [3,4] and concerning )(1)( 11 xxR ψ−=  are presented and analyzed. 
But often random variables ...2,1, =kYk  and ...2,1, =ktk  have discrete distributions. In these cases the ap-
propriate probabilities and they generalizations satisfy difference equations instead of integro-differential equa-
tions.  These equations are quite complicated, they can have advances and also delays in the arguments.  In 
this publication we set up the appropriate difference equations, we analyze them, we give analytical solu-
tions for them. 

In this paper we suppose both the time intervals between consecutive fillings times and the amount of mate-
rial have discrete distributions with notation )()( jfjtP k == ...2,1,0=j  and )()( igiYP k == , 

,...2,1,0=i , furthermore 1=c . Now 0)( ≥jf , 0)( ≥ig , ∑
∞
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j

jf , 1)(
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ig . We assume that expecta-

tions of the random variables are finite, that is ∞<=∑
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jfj
j

fμ , ∑
∞
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i

g iigμ .   We draw the atten-

tion that the value of  j  can be zero too, which means that at the same time points more than one fillings can 
happen.  

Let )(nu  be defined as the probability of overflow supposing the size for changing of amount of material to 
be n , namely 
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Furthermore let us introduce the notation for the probability of the time point of the first overflow   
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 expresses that the first overflow hap-

pens at time point m, if the size for change of material is n.  We note that 0)0(
0 =p . 

The above defined probability )(nu  expresses the probability that having n  initial surplus ruin will happen 

and 0
)( )( ≥m

n
mp  is the probability that this ruin will happen at time point m. In the continuous case investi-

gating ruin probability, the Gerber-Shiu discounted penalty function is usually applied and it is the 
Laplace-transform of the density function of the time of ruin [1,2]. Actually we introduce the z transform of 
the above defined sequence )(n

mp  for all fixed values of n.  The z transform of the sequence 0
)( )( ≥m

n
mp  is a 
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provided z is a complex number for which the series converges absolutely. We will restrict ourselves for 

real values of z  and 1≥z . For fixed values of 1z ≥ ( )∞
=0

)( (z) n
nϕ   is sequence, but for fixed value of  0≥n

(z))(nϕ  is a function mapping from [ )∞,1  to the set of real numbers.  Moreover, it is clear, that 1(z)0 )( ≤≤ nϕ

for any 1z ≥  and Nn ∈ , )()1(
0
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expectation of the time of the first overflow. 

3 Difference equations for  sequence  )(nu  and function (z))(nϕ

Theorem 3.1  
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Proof:  
Let jY =1  and it =1 . We apply the theorem of total probability with conditions jY =1  and it =1 ,...1,0=j , 
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If jni +> , then  overflow happens at time point j. If jni +≤ , then overflow will not happen to the time point 
j. At this time point the size for change of amount of material is n+j-i as the filled material is i and the amount of 
withdrawn material is j. Hence using the renewal technique one can see that  (3.2) equals  
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Now let us turn to the function )()( znϕ . We proved that the series of functions )()( znϕ ( n=0,1,2,…) satisfies 
the following difference equation for any fixed values of  1≥z  : 

Theorem 3.2   
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Proof: 

Let the symbol t(n) denote the time of the first overflow, that is  
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Two cases can be distinguished. If 11 tnY +≤ , then the first overflow can not happen to 1t , hence the process 
will be renewed but the expectation of overflow time has to be increased by the value of 1t  and the initial 
amount of material decreases by  i as well. If  11 tnY +>  then the process falls below zero at 1t .  
Consequently  
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which coincides with (3.3). 

We note that Theorem 3.2 is a generalization of Theorem 3.1.  Although the technique of the proof is different, 
one can check that if we substitute 1=z  into Theorem 3.3 we get Theorem 3.1. 

4 Existence and uniqueness of the solution of the difference equation (3.3) 

Now we turn our attention to the Eq.(3.3). We investigate what can be state about the existence of the solution, 
and in the case when it is not unique we answer the question that which of the solutions of the Eq.(3.3) is the 
solution of the original problem, namely which of the solutions can be the function defined by (2.3). 

Theorem 4.1  

The Eq.(3.3 ) has a unique solution for any fixed value of 1≥z  in the set of bounded sequences assuming 

1)()(
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Proof: 
Let us introduce the operator zK  by the following definition  
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zK  is an operator both of the argument and image of which are bounded sequences. Furthermore 
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Hence zK is contraction and as the set of bounded sequences is complete hence there is a unique bounded se-
quence for which ϕϕ =)(zK .

Note that condition 1)( <zc  holds if 1>z  and 1)0( <f . Consequently in this case the solution of Eq. (3.3) is 

unique in the set of bounded sequences. It is clear, that (z))(nϕ  defined in (2.3) is bounded as 1(z)0 )( ≤≤ nϕ  for 
any 1z ≥ . Hence if 1>z  and 1)0( <f  finding a bounded solution of (3.3), we have determined the function 
defined by (2.3) and it can be used for solving the original engineering problem.  

We have to draw the attention that if 1z = , the assumptions of Theorem 4.1 are not satisfied as 
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jfc .   Hence the uniqueness of the solution of (3.1) is not the consequence of Theorem 4.1. 

Moreover the uniqueness of the solution in the set of bounded sequences does not hold. Example will be pre-
sented in section dealing with special cases. In this case we have to choose the function defined by (2.3) from 
solutions of (3.1) by taking )(lim )(
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5 Qualitative property of the solution of Eq.(3.3) 

Now we prove that Eq.(3.3) implies a special property of the solution in some cases. More precisely, we show 
that under condition 1(z) <c  the bounded solution of Equation (3.3) tends to zero if  ∞→n . 

Theorem 5.1
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If ∞→N  we get j
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Recall that )()( znϕ  is bounded and 1)( <zc , we get (5.1). Taking into account that 

∞<== ∑∑∑
∞

=

∞

=

−
∞

=

−

0 10

)()()()(
j i

j

j

j zigjfzjfzc  , hence  0)()(
0 1

→∑ ∑
∞

=

∞

++=

−

j jni

jzigjf  if ∞→n ,  and 

jzigjf −)()(  are nonnegative, hence 0)()(suplim
0 1

=∑ ∑
∞

=

∞

++=

−

∞→ j jni

j

n
zigjf ,  the limit of  0)(lim )( =

∞→
zn

n
ϕ .

Corollary  If 1>z  and 1)0( <f , then the (unique) bounded solution of Eq. (3.3) satisfies 0)(lim )( =
∞→

zn
n

ϕ , but 

we can not state this property for the solutions of Eq. (3.1).    

6 Analytical solutions in special cases  

In this section we give analytical solutions for Equation (3.3) in the special case when the time intervals between 
the consecutive fillings have geometric distribution. 

In insurance mathematics in the continuous case, exponential distribution for the consecutive filling times is very 
important and often investigated, this is called compound Poisson risk process [1,6]. As the discrete analogue of 
the exponential distribution is the discrete geometrical distribution, we solve the difference equation in this spe-
cial case.  

Theorem 6.1  

Let jffjf ))(1()( −= ,...2,1,0=j  with 10 << f . Now the Equation (3.3) can be transformed into the follow-
ing equation: 
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The proof requires a lot of elementary transformations hence we do not detail it. 

We note that this equation has only delays in the indices. This phenomenon is analogous to the Poisson risk 
process, in which the integral equation is a Volterra-type integral equation, which means that it has delay in the 
argument [1,2].  

Now we simplify the Equation (6.1) in special case of  ,...2,1)( =iig . 
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Now equation (6.1) can be written in the following form: 
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Try to find the solution in special form. As we know that the solution is unique assuming 1>z  this is a possible 
way for solving the equation. As in some special case in the Poisson risk process the solution is exponential 
function, we use the form ( )nn zzz )()()()( μαϕ = ,...2,1,0=n . Substituting this form into the formula concerning  

,...3,2=n  (6.2.b) and simplifying by  ( ) 2)()( −nzz μα  we get the following equation for )(zμ : 
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Solving the Equation (6.3) we get 
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As we know that the solution of Equation (3.3) is unique in the set of bounded sequences we can state that we 
have found the solution. 

Let us turn to the case 1=z  .  Now 
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solution of (3.3) (that is the uniqueness of the solution of (3.1)) in the set of bounded sequences does not hold. 
Therefore we have to choose that solution of solutions of (3.1) which is the solution of the original physical 
problem as well.  

Using the technique used in [4] by the help of probability theory one can prove that if  c
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We note that as 
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−= 1μ  and 1=gμ , 1=c , condition c
f
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 holds if and only if  f<
2
1 . Hence in the case 

of 1=z , Eq.(3.1) does not imply that the solution tends to zero but if we know the limit of the solution from the 
physical process,  the solution of (3.1) will be unique.     

If  
2
1<f , then 1)1(1 =μ  and 1)1(2 >μ  1)(2 >zμ , hence ( )n)1(2μ  is not bounded, hence 1)1()( )( ≡= nnu ϕ .  

Finally if 
2
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Now we can summarize our result in Theorem 6.2 as follows: 

Theorem 6.2 

Let jffjf ))(1()( −= ,...2,1,0=j with 10 << f   and 
⎩
⎨
⎧ =

=
otherwise

iif
ig

0
11

)(  .  

Assume 1>z  and 1)0( <f  holds. Now the unique bounded solution of  Eq. (3.3) is 

1
2

)(

2
)1(4

)(

+

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ −−−
=

n

n

f
ffzzz

zϕ .        (6.6) 

If 1
2
1 << f , then the function defined by (2.3) is 

1

)(

2

121
)1()(

+

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ −−
==

n

n

f

f
nu ϕ .  If  

2
10 ≤< f , then  the 

function at 1=z defined in (2.3) 1)1()( )( ≡= nnu ϕ .      

  

Let us turn to another special case when ( ) 1
)1()(

−
−=

i
ggig , ,...3,2,1=i

Let jffjf ))(1()( −= ,...2,1,0=j with 10 << f   and ( ) 1
)1()(

−
−=

i
ggig , ,...3,2,1=i with 10 << g . 

Now equation (6.1) can be written in the following form: 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−+−

−
−= −

∞

=

−
−

=

−−−
∑∑

11
1

1

)1()1()( ))(1())(1)((
1

)()( i

ni

i
n

i

innn ggggzz
f

fz
f
zz ϕϕϕ   .   (6.7) 

If we try to find the solution in form ( )nn zzz )()()()( μαϕ = , then we get 

( )
f

zfggffzfgzfgz
z

2
4)1()1(4

)(
2

1
−−−−+−+

=μ       (6.8) 

( )
f

zfggffzfgzfgz
z

2
4)1()1(4

)(
2

2
−−−−+++

=μ

and  2,1,
1

)()( =
−

−= i
g

gzz i
i

μα          (6.9) 

Again, one can check that if 1>z , then )(1)( 21 zz μμ << , and  the unique solution of (3.3) is 

( )nn zzz ()()( 11
)( μαϕ = . 

If we turn to the case 1=z , we get   

f

fgffg

2

211
)1(1

+−−+
=μ          (6.10) 

f

fgffg

2

211
)1(2

+−++
=μ

In this case if  11
1

1 <−⋅
−

=
f

f
gf

g

μ
μ

, then  1)1(1 <μ , and 1)1(2 =μ , which means that  the bounded solution of  

(3.1) is not unique  but the solution which tends to zero is ( )nnnu 1()1()1()( 11
)( μαϕ == . 
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If 11
1

1 ≥−⋅
−

=
f

f
gf

g

μ
μ

, then 1)1()( )( ≡= nnu ϕ for any value of ,...2,1,0=n . 

Our results can be summarize in  

Theorem 6.3 

Let jffjf ))(1()( −= ,...2,1,0=j with 10 << f   and ( ) 1
)1()(

−
−=

i
ggig , ,...3,2,1=i with 10 << g . 

 If 1>z , then the unique bounded solution of Eq. (3.3) is 

( )
( )

n

n

f
zfggffzfgzfgz

g

g
f

zfggffzfgzfgz

z

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−−−−+−+

⋅
−

−
−−−−+−+

=

2
4)1()1(4

1
2

4)1()1(4

)(

2

2

)(ϕ

              

If  1=z , and  11
1

1 <−⋅
− f

f
g

, then the function at 1=z  defined in (2.3) is  

n

n

f

fgffg

g

g
f

fgffg

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ +−−+
⋅

−

−
+−−+

=
2

211

1
2

211

)1()(ϕ .     (6.11) 

If 1=z  and 11
1

1 ≥−⋅
− f

f
g

, then the function at 1=z  defined in (2.3) is 1)1()( ≡nϕ . 

7 Numerical examples 

Finally we present figures which illustrate the results in previous section and we turn back the original physical 
problem. 

First we have chosen jffjf ))(1()( −= ,...2,1,0=j with 19/10=f   and 
⎩
⎨
⎧ =

=
otherwise

iif
ig

0
11

)(  .  

In this case the overflow probabilities )(nu getting from (6.5) can be seen on Figure 6.1. 
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0.7

0.8

0.9

Figure 6.1. Overflow probabilities )(nu in the function of the volume )(n  in the intermediate storage 
 for the change of a amount of material supposing discrete geometrical distribution for the distribution of time intervals 

n 

u(n) 

19/10=f
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If we would like to use this analytical results to determine the appropriate size of the storage to the reliability 
level 0.95, we have to find the smallest n for which 95.0)(1 ≥− nu . As in the presented case 9.0)1(1 =μ , apply-
ing (6.5) we get 28=n . If we would like to know the expectation of the overflow if the volume for change of 
material is 28=n  , we have to derivate the function ( ) ( )29

1
)28(

1 )(zz μϕ =  and substitute 1=z  to the derivative 
and the expectation is .29.12     

On Figure 6.2. one can see the dependence of the roots of  Eq.(6.3) of  z.  The parameter is the same as it was in 
the previous example.  One can see that if 1>z , then one of the roots is smaller than 1 and decreasing in z , and 
the second one is greater than one. If  1=z ,  the larger root equals 1. 

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0.5

1

1.5

2

2.5

3

3.5

Figure 6.2. The roots of the Eq.(6.3) in the function of z   
assuming discrete geometric distribution for the distribution of time intervals

Have a glance at the function )()( znϕ  with two variables z  and n as well.  Parameter is not changed. 

On Figure 6.3. we can see that the function )()( znϕ  is close to zero even for small values of n ,  and as )(1 zμ  is 
decreasing, hence the larger z  the faster convergence. 

Figure 6.3. The function )()( znϕ  with two variables z  and n   
assuming discrete geometric distribution for the distribution of time intervals

)(1 zμ

)(2 zμ

n 
z 

)()( znϕ

19/10=f

19/10=f
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In order to compare the results with the results we got from continuous case we recall the example given in [4] in 
case when kt and kY   have exponential distribution. We choose 23/20=f , 8.0=g  in order to have appropri-
ate expectations with 1=c  to the parameters given in [4] on Figure 2. The analytical result for the reliability 

x
c

f

g gfe
c

xxR
)11(

11 1)(1)( μμ

μ
μ

ψ
−−

−=−=  given by (14) in [4] and )(1 nu− given by (6.11) can be seen together on 

Figure 6.4.  We can see that the numerical results are quite close to each other which is useful if we would like to 
use discrete model instead of a continuous model. 
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Figure 6.4. Analytical result for the reliability )(1 xR (__) in the continuous model with exponential distributions  

and analytical results for )(1 nu−  (*)  in the discrete model with discrete geometrical distributions  

8 Summary 

A discrete mathematical model is presented and analyzed for sizing intermediate storages to a given reliability 
level. First we introduced the probabilities of overflow in the function of volume as a sequence then we defined 
its z  transformed as a generalization. We set up and proved the difference equations satisfying by the overflow 
probabilities and the z  transform as well. We proved the existence and the uniqueness of the solution for 1>z
and presented example when the solution is not unique if 1=z . We analysed the limit of the solution. We 
solved the equation analytically in special cases and used the analytical solution for solving the original sizing 
problem. 
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