
MULTI-AGENT ADAPTIVE MECHANISM LEADING TO OPTIMAL
REAL-TIME LOAD SHARING

O. Gallay, M.-O. Hongler
EPFL, STI-IMT-LPM, Lausanne, Switzerland

Corresponding author: O. Gallay, Ecole Polytechnique Fédérale de Lausanne (EPFL),
STI-IMT-LPM, Station 17, CH-1015 Lausanne, olivier.gallay@epfl.ch

Abstract. We propose a new real-time load sharing policy (LSP), which optimally dispatches the in-
coming workload according to the current availability of the operators. Optimality means here that the
global service permanently requires the engagement of a minimum number of operators while still re-
specting due dates. To cope with inherent randomness due to operator failures as well as non-stationary
fluctuating incoming workload, any optimal LSP rule will necessarily rely on real-time updating mech-
anisms. Accordingly, a permanent monitoring of the traffic workload, of the queue contents and of
other relevant dynamic state variables is often realized by a central workload dispatcher. In this contri-
bution, we abandon such a "classical" approach and we propose a fully decentralized algorithm which
fulfils the optimal load sharing process. The underlying decentralized decisions rely on a "smart tasks"
paradigm in which each incoming task is endowed with an autonomous routing decision mechanism.
Incoming jobs hence possess, in this paper, the status of autonomous agents endowed with "local intelli-
gence". Stigmergic interactions between these agents cause the optimal LSP to emerge. We emphasize
that beside a manifest strict relevance for applications, our class of models is analytically tractable,
a rather uncommon feature when dealing with multi-agent dynamics and complex adaptive logistics
systems.

1 General Context
The reduction of manpower or other resource costs is an everlasting managerial challenge in any production and
service network. Such contraction of the operating costs obviously relies on an optimized workload sharing be-
tween the available operators. Processing the full incoming load by using the minimum number of available
operators, while still respecting given due dates, is clearly the basic optimization objective. The operator random
failures as well as the non-stationary fluctuating incoming workload force the optimal load sharing policy (LSP)
to be based on a permanent monitoring of the system state (i.e. queue contents, instantaneous traffic, etc). While
this information updating process, on which our adaptive optimal LSP will be based, is often fulfiled by a cen-
tral dispatcher, our present contribution shows how fully decentralized mechanisms, of multi-agent type, are also
perfectly suitable to achieve the same objective.

A large body of the available literature focuses attention on the customer side. Thus, the problem consists in min-
imizing the customers’ average waiting time and, therefore, the maximum total load on each server is minimized.
Here, we adopt the complementary point of view of the service provider and try to minimize the number of en-
gaged operators while nevertheless respecting due dates. Referred as adaptive load balancing, the above mentioned
classical problem has first been addressed using centralized management (see [3] for instance) and more recently
by using decentralized mechanisms (see [5] among others). Note that although our model does not, stricto sensu,
optimize customer satisfaction, it allows however to bound the maximum waiting time in the system by an ad-hoc
tuning of control parameters. While numerous aspects of load balancing and load sharing have been abundantly
discussed over the last three decades, relatively little attention is devoted to information gathering costs. Along
these lines, let us mention contribution [4], where with the aim to minimize the average waiting time, the au-
thors take explicitly into account the monitoring costs. The ultimate goal in [4] is to find a tradeoff between the
benefit and the costs of information gathering needed for any adaptive load sharing mechanism. To that purpose,
an autonomous load sharing mechanism is derived, which adapts optimally the number of monitored servers to
the current workload. This study is hence somehow related to the present work, where our aim is to optimally
determine the number of servers to engage in order to face the current load.

The present work shares several similarities with well-known congestion control problems arising in the Internet
[1, 2, 8, 12, 17] where one tries to regulate the data flows to avoid congestion at servers (operators in the present
case and gateways in the Internet). In both cases, the ultimate goal is to simultaneously ensure queue stability and
maximization of resource utilization (busy period here and throughput in the Internet framework). To that purpose,
one implements feedback information flows to warn about server congestion. While the presence of randomness
definitely favors flexible and decentralized management in both contexts, there exist however manifest differences.
Indeed, the agent character is in the present paper carried by the tasks themselves while it is managed for the
most part by the servers in the Internet. While in congestion control problems, fairness between the different users
(in terms of throughput or delay) is essential, this feature is not required in the present case. Furthermore, it is
common in congestion control mechanisms to use randomnization to discard packets when a buffer gets congested

242

I. Troch, F. Breitenecker, eds. ISBN 978-3-901608-35-3

and hence ensure that fairness between users. On the contrary, noise is used in our framework to dispatch the
tasks between the servers, hence forming a noise-induced stability mechanism. Several congestion control rules
[8, 12, 17] generate stable oscillations of the queue content and these will also be observed here. In both cases,
the oscillations are due to the presence of information delay in the underlying controller, a phenomena thoroughly
investigated for self-interested agents competing for common resources [14].

The dynamics to be discussed here exhibits optimal load sharing entirely due to decentralized history-based rout-
ing mechanisms. The complete lack of central management, the agents’ autonomy, their ability to learn and the
stigmergic agent type of interactions imply that our class of models belongs to the field of Complex Adaptive
Logistics Systems (CALS). Instances of CALS might also emerge in the framework of supply chains. In [19],
the need, in supply chain management, for coordination strategies leading to adaptive, flexible and collective be-
haviours is exhibited and it is showed that coherent global behaviour can be generated by using only elementary
components with local interactions. This contribution explains how basic concepts and operational tools of Com-
plex Adaptive Systems (CAS) fit naturally and efficiently to characterize the supply chains dynamics. In this
context, contributions [18, 19] expose the dynamics of simple queueing systems (QSs) for which feedback loops
and delays coexist and yield temporal oscillations of the queue contents. While the relevance and legitimacy of
CAS have since long been emphasized in basic sciences (i.e. physics, chemistry and biology), it is remarkable
that CAS also strongly enter into the engineering world, for example in logistics [13, 21], in traffic issues [15] and
in production and service systems [9, 10, 11]. Note in addition that, besides its direct relevance to load sharing
problems, the analytical tractability of the present class of models contributes to enrich the, so far, short list of an-
alytically solvable CALS. In closing, we emphasize that among several possibilities to implement our algorithm,
Radio-Frequency-Identification-Devices (RFID) attached to the incoming tasks provide a natural solution. The
available RFID technology now directly allows for a wide implementation of local intelligence to circulating items
in production systems, as it is testified in [6, 16, 20], which explore how this technology leads to an effective and
efficient management of business processes.

In section 2, we describe our basic modelling framework. In section 3, we introduce our multi-agent type dynamic
load sharing algorithm. In section 4, we study the emergence of self-organized stable load sharing, by using
analytical considerations as well as simulation results. In the Appendix, we describe in more details the oscillatory
behaviour that appears in the queue content dynamics.

2 Basic Modelling Framework
We consider a production center fed by an incoming flow of tasks modelled by a non-stationary, random renewal
process with rate λ (t). The production center is therefore a generic QS with N parallel servers. Each incoming
task ζ j (j ∈ N) requires a specific amount Uj > 0 of processing time. The Uj’s are characterized by i.i.d. random
variables with general probability distribution, whose mean is fixed to 1.

The objective is to realize an optimal load sharing policy defined by:

(O): Optimal Load Sharing Policy (LSP)
i) "Process the global incoming workload by permanently engaging the minimal number

of available servers" or equivalently, using QS terminology, "maximize the busy period
of the engaged servers".

ii) "Keep the average waiting time below a given level".

To achieve the objective O , one can rely either on a centralized solution (i.e. a central dispatcher) or on ad-hoc
decentralized control mechanisms. Our aim here is to realize O by using a multi-agent decentralized framework.
Such decentralization permanently ensures strong reactivity and high flexibility to cope with random and non-
stationary environments. In the sequel, we assume non-preemptive LSP (i.e. a task cannot be transferred from one
server to another after its execution has started).

Server Parameters. A server Mα , α ∈ {1,2, ...,N}, is characterized by:
i) its processing rate μα ,
ii) its queue capacity parameter Cα > 0, that plays the role of a congestion threshold,
iii) a two states ("open" or "close") warning semaphore Sα , controlled by the queue capacity parameter Cα .

"Smart Task" Agent Character of Incoming Jobs. Each incoming task has the capability to:
i) record its sojourn time τ spent into the system (i.e. τ = W +V , W being the waiting time in the queue and V

the processing time),
ii) identify the server α , α ∈ {1,2, ...,N}, that did process the task,
iii) compute a set of individual dispatching probabilities pα , α ∈ {1,2, ...,N − 1}, that characterize, for each

task, an autonomous routing strategy,

243

Proceedings MATHMOD 09 Vienna - Full Papers CD Volume

iv) read the state of the semaphores Sα attached to each server.

As we assumed the incoming task size to be i.i.d. with mean 1, the service times of Mα inherit the randomness and
are hence also i.i.d. random variables with identical distribution and mean 1

μα
.

3 Multi-Agent Type Algorithm
A "smart task" behaves as follows:

i) On entry:
An incoming task first reads the state of S1. If S1 is open, the task enters M1. If S1 is closed, the task routing
is: enter M1 with probability p1 and, with probability (1− p1), read the state of S2 to tentatively join M2. If
S2 is open then M2 processes the task. If S2 is closed, the task enters with probability p2 into M2 and with
probability (1− p2) reads the state of S3 to tentatively join M3. The rule is then applied iteratively.

ii) On exit:
If the sojourn time τ j,α of the outgoing task ζ j (j ∈N), processed by Mα , exceeds Cα (i.e. τ j,α > Cα) then ζ j
sets Sα to the state "closed". In words, when a task processed by Mα has spent Cα in the system, it triggers
immediately the closing of Sα even if the processing is not yet completed. Conversely, on exit, provided
τ j,α ≤ Cα , ζ j sets Sα to the state "open".

Note that, even when a semaphore Sα is closed, a pα-based partial incoming traffic continues to be processed by a
congested server Mα . The tasks joining such an overloaded server ultimately enable the reopening of the associated
semaphore as soon as the workload becomes undercritical (i.e. τ j,α ≤ Cα).

The ability for each travelling task to monitor information left by predecessors and to process this information to
autonomously decide its routing strategy confers to this dynamics a manifest adaptive multi-agent character (see
Figure 1 for a summarizing sketch of the model).

��

��

��

��

����

��

��

����

��

	�
��

	�
��

	�
��

	���
��

	�
��

λ(t)

Figure 1: N-parallel servers queueing system with decentralized load sharing mechanism.

244

I. Troch, F. Breitenecker, eds. ISBN 978-3-901608-35-3

4 Emergence of Optimal Load Sharing Dynamics
From now on, we assume that the number N of potentially available servers is sufficient to always handle the
offered workload, i.e.

λ (t)
∑N

α=1 μα
< 1.

By the construction of the multi-agent dynamics, given in section 3, our LSP automatically ensures permanently i)
the engagement of the minimal number of servers and ii) queue stability. As exposed in the Appendix, we observe
(see Figure 2) that for large enough Cα ’s, α ∈ {1, ...,N}, the queue contents exhibit stable temporal oscillations
whose maximum values are given by:

Qmax,1 = C1λ (t)−1; Qmax,α = Cα λ (t)
α−1

∏
i=1

(1− pi)−1, α ∈ {2, ...,N}. (1)

Tuned by the control parameters Cα , α ∈ {1, ...,N}, these maximum possible queue contents can be used to

M1 M2 M3 M4Q1 Q2 Q3 Q4Q4�� �� �� �� �� �� �� ��

Figure 2: Left: Temporal evolution of the queue contents for interarrival times uniformly distributed in [0.16;0.36]
(λ (t) = 3.8), K = 10, service times uniformly distributed in [0.5;1.5] (μ1 = μ2 = μ3 = μ4 = 1), C1 = C2 = C3 = C4 =
26 and εα = 0.22−0.7(α −1), α ∈ {1,2,3}. Right: Corresponding server utilization.

calibrate the waiting room sizes and hence, due to Little’s law, to limit the task waiting times. In particular, tasks
subject to deadlines can be handled within the present framework. As shown in the Appendix, it is here worth to
emphasize that the queue content of the engaged servers never vanishes, thus ensuring maximum busy period and
hence optimal load sharing.

Let us now discuss in more details the role played by the dispatching probabilities pα , introduced in Section 2.
Remember that a congested server continues to be fed by a reduced incoming flow with rate:{

p1λ (t) for server M1, and
pα λ (t)∏α−1

i=1 (1− pi) for server Mα , α ∈ {2, ...,N}.

Consequently, after a congestion occurs, the queue in front of the congested server will effectively decrease iff the
following condition is satisfied:{

p1λ (t)− μ1 < 0 for server M1, and
pα λ (t)∏α−1

i=1 (1− pi)− μα < 0 for server Mα , α ∈ {2, ...,N}.
(2)

To fulfil condition (2) the dispatching probabilities pα , α ∈ {1, ...,N −1}, have to be chosen as:

p1 =
μ1

λ (t)
− ε1

and
pα =

μα

λ (t)∏α−1
i=1 (1− pi)

− εα , α ∈ {2, ...,N −1},

with μ1
λ (t) > ε1 > 0 and μα

λ (t)∏α−1
i=1 (1−pi)

> εα > 0, α ∈ {2, ...,N − 1}. This choice ensures stability of the queue
contents. The smaller the value of the εα ’s is, the closer to optimality the load sharing is (i.e. the busy period of
the engaged server Mα converges to 1 when εα → 0). A too drastic reduction of the partial traffic (εα large ⇒ pα

245

Proceedings MATHMOD 09 Vienna - Full Papers CD Volume

small) yields poor reactivity of the system. Indeed, the resulting long delay before the reopening of the semaphore
is likely to empty the queue, thus leading to a decrease of the busy period.

As noted in [4], the incoming flow rate λ (t) can itself be estimated, in real-time, by elementary agent-to-agent
interactive mechanisms. This ultimately enables each task ζ j, j ∈ N, to estimate autonomously the ad-hoc dis-
patching probabilities pα , j, α ∈ {1, ...,N −1}, which characterize its routing strategy. With this, our load sharing
algorithm becomes fully decentralized, all routing decisions being taken by the circulating items themselves. One
possibility to implement such a decentralized traffic estimation reads as follows:

Multi-Agent Type Traffic Load Estimator. Each task ζi (i ∈ N) stores, upon arrival, its entry time ti in the
system on a register permanently accessible to the other tasks. The traffic estimator λ j(t), computed by the
incoming task ζ j (j ∈ N), relies on an observation window of size K. ζ j reads the entry-time t j−K of the Kth

preceding task and estimates the instantaneous traffic by:

λ j(t) =
t j − t j−K

K
.

As clearly illustrated in Figure 2, this very rough estimation of the global incoming traffic is sufficient to complete
the overall objective O and this, despite the underlying randomness. There is obviously an optimal trade-off to
select an appropriate value of the observation window K. Valuing mostly the reactivity, we prefer small values of
K for the observation window. As illustrated in Figure 3, small values of K lead indeed to highly reactive response
(i.e. the length of the transient adaptive phase is almost negligible). This is in particular perfectly suitable for
non-stationary incoming traffic load.

Q1 Q2 Q3 Q4Q1 Q2 Q3 Q4Q4�� �� �� ��

Figure 3: Temporal evolution of the queue contents for service times uniformly distributed in [0.5;1.5]
(μ1 = μ2 = μ3 = μ4 = 1), C1 = C2 = C3 = C4 = 26 and εα = 0.22 − 0.7(α − 1), α ∈ {1,2,3}. Interarrival times
uniformly distributed in [0.32;0.72] (λ (t) = 1.9) for 0 ≤ t < 450 and uniformly distributed in [0.16;0.36] (λ (t) = 3.8)
for t ≥ 450, K = 10.

Quantitatively, the length of the adaptive phase thus only depends on the effective delay between the time a conges-
tion effectively occurs and the time it is detected. This delay, for server Mα , is equal to Cα (see the Appendix for
more details). Note that depending on the specific management issues, larger observation windows K could also
be selected whenever smooth reactions are required for system reliability or to avoid large set-up costs. Observe
that most internet congestion control mechanisms rely on relatively large values of K for the observation window
to smoothly react to bursty traffic.

5 Conclusion and Perspectives
In a competitive environment, to attract new and to keep loyal customers is the basic concern of any service
provider, which definitely requires a high service customization to match all specific demands. Service customiza-
tion affects both the quantity and the nature of the incoming demands. Focusing on quantitative aspects, one
should clearly expect that high service customization necessarily leads to non-stationary and highly fluctuating
rate of the service demand. Hence, constructing efficient service policies able, in such random and time-dependent
environments, to entirely fulfil customer satisfaction while maintaining the operating costs at the lowest possible
level is definitely a complex challenge. The ubiquitous non-stationary and fluctuating nature of the underlying de-
mand imposes flexibility and reactivity to be key characteristics of any efficient algorithm required by the system
management. Among other classical problems, we focus here on the construction of an optimal service policy

246

I. Troch, F. Breitenecker, eds. ISBN 978-3-901608-35-3

which enables the sharing of the global incoming workload between a set of available servers. In general, such a
load sharing policy will be achieved by a central operator which dispatches, by an on-going real-time information
gathering of a set of relevant system state variables, the incoming jobs among the available servers. Leaving aside
such a centralized point of view and hence following a vigorous recent trend emerging in production and service
systems, we explicitly show how the same task can also be perfectly realized using a fully decentralized algorithm.
Our basic idea relies on a multi-agent perspective implying the service management to be performed by the jobs
themselves (i.e. "smart tasks" paradigm). We are able to explicitly show how autonomous smart tasks can ensure,
in real-time, that the global load is processed by the minimum number of engaged operators while permanently
avoiding the system to get congested. The intrinsic simplicity of our algorithm, the analytical tractability of our
models which offers an intimate understanding of the operating dynamics and, finally, the possibility, using RFID
(i.e. Radio-Frequency-Identification-Devices), to confer an autonomous agent character to incoming jobs, clearly
suggest how the implementation could actually be realized. Our present basic model offers several possibilities for
refinements to cover realistic situations. For example, "fairness" issues could be addressed by adding an additional
mechanism which would ultimately ensure that all incoming tasks wait in average the same time before being
served.

6 Acknowledgments
This work is partially supported by the FNS (Fonds National Suisse pour la Recherche) under grant no 200020-
117608/1.

7 Appendix: Queue Content Oscillatory Behaviour - Siphon Dynamics
We discuss here in more details the emergence of the temporal oscillations observed for the queue contents, as
illustrated in Figure 2. We focus, for the discussion of this temporal oscillatory behaviour, on a deterministic ap-
proach. This approach, due to the law of large numbers (LLN), is also relevant in presence of fluctuations when
the Cα ’s, α ∈ {1, ...,N}, are sufficiently large (i.e. quasi-deterministic stable cyclo-stationary queue oscillations
emerge independently of the inter-arrival and service time distributions). Note qualitatively that the relative impor-
tance of the fluctuations around the task average sojourn time (which is the sum of the preceding tasks individual
processing times) decreases for large queue content Qα(t) (a quantitative characterization is given in [7]). Figure
4 explicitly exhibits that the larger the Cα ’s are, the smoother the oscillations are.

M1 M2 M3 M4Q1 Q2 Q3 Q4 M1 M2 M3 M4Q1 Q2 Q3 Q4Q4�� �� �� �� �� �� �� ��

Figure 4: Left: Temporal evolution of the queue contents for interarrival times uniformly distributed in [0.16;0.36]
(λ (t) = 3.8), K = 10, service times uniformly distributed in [0.5;1.5] (μ1 = μ2 = μ3 = μ4 = 1), C1 = C2 = C3 = C4 =
200 and εα = 0.22−0.7(α −1), α ∈ {1,2,3}. The smoothing effect due to the underlying LLN is manifestly observable
by comparing Figures 2 and 4. Right: Corresponding server utilization.

Along the lines exposed in [7], we start by characterizing the oscillations of the first queue content Q1(t). During
an initial phase, Q1(t) increases at rate λ (t)− μ1, the whole traffic λ (t) is indeed dispatched to M1, which is
not yet overloaded. M1 is considered as congested when Q1(t) reaches the level C1μ1 − 1. Indeed, at this time,
a newly incoming task ζ j will spend in average C1 in the system (i.e. its mean waiting time will be equal to
(C1μ1 −1) 1

μ1
= C1 −

1
μ1

and its processing time will be equal in average to 1
μ1

). The queue Q1(t) reaches its
auto-siphoning threshold when the congestion is first detected, which happens when ζ j did wait C1 in the system.
This then starts a second operating phase during which Q1(t) decreases at rate p1λ (t)− μ1. This second phase
lasts until a task detects that M1 is not congested anymore, this happens after a time delay C1 initiated when Q1(t)
reached again the level C1μ1 −1. The alternance between these two operating phases creates queue content stable

247

Proceedings MATHMOD 09 Vienna - Full Papers CD Volume

oscillations whose amplitude Δ1 and period Π1 are respectively given by :

Δ1 = (1− p1)C1λ (t)

and
Π1 = C1

[
2 +

μ1 − p1λ (t)
λ (t)− μ1

+
λ (t)− μ1

μ1 − p1λ (t)

]
.

The maximum and minimum values of these oscillations are given respectively by Eq. (1) and

Qmin,1 = p1C1λ (t)−1.

To understand the underlying delay mechanism, it is enlightening to visualize the queue dynamics by using the
hydrodynamic analogy sketched in Figure 5. We emphasize that contrary to the flow dynamics discussed in [7]

μ1

λ(t)

inflow

outflows

period πΠ1

p1C1λ(t) − 1��C�	 (�)−�

C���−�

C�	 (�)−�

C� C�

C�	 (�)−�

��C�	 (�)−�

	 (�)

��

��(�)

�� (�− ��)	 (�)

��(�)

�����

Figure 5: Hydrodynamic analogy. Left: The task entering at t0 is the first one of a whole cluster G of tasks that will
detect congestion. This task triggers the alternation of Q1(t) from the increasing to the decreasing state at t0 +C1. The
last task belonging to cluster G is the one entering the system just before t1 and triggers the switch of Q1(t) from the
decreasing to the increasing state at t1 +C1. This simple delay dynamics repeats and creates stable oscillations of the
queue content. Right: The “Tantalus glass” siphon model. The water level corresponds to the queue length Q1(t). The
continuous inflow and outflow rates are respectively given by λ (t) and μ1. The periodic alternate siphoning outflow is
(1− p1)λ (t). The siphon leaves a water residue of height p1C1λ (t)− 1, due to the continuous inflow during C1. The
effective siphon length is (1− p1)C1λ (t).

where there is a feedback loop fed by physical items, here the feedback is purely informational (i.e. the items leave
the system after service but deliver an indicative feedback to the following tasks).

The oscillation frequency of Qα(t), α ∈ {2, ...,N}, are identical to Q1(t), hence

Πα = Π1, α ∈ {2, ...,N}.

This is illustrated in Figures 6 and 7 (respectively corresponding to Figures 2 and 4), where we exhibit the Fourier
components (i.e. the spectrum) of the queue dynamics obtained by simulation for small, respectively large, values
of Cα , α ∈ {1, ...,N}. As expected, for large values of Cα , the spectrum exhibits a sharp mode (i.e. the signal-to-
noise ratio is enhanced).

For servers Mα , α ∈ {2, ...,N}, the oscillations exhibit an additional structure. Namely for Qα(t), α ∈ {2, ...,N},
it exists an alternation between three distinct operating phases:

i) When all the servers Mβ , β ∈ {1, ...,α − 1}, are overloaded and hence their semaphores are closed, Mα
receives a traffic with rate:

λ (t)
α−1

∏
i=1

(1− pi) .

Indeed, from the full incoming workload λ (t), one has to substract the pα-based partial traffics, that feed the
congested servers. As a consequence, during this phase, Qα(t) increases at rate λ (t)∏α−1

i=1 (1− pi)− μα .

ii) Once server Mα becomes congested, Qα(t) starts to empty. Provided all servers Mβ , β ∈ {1, ...,α − 1},
remain congested, the incoming traffic continues to be dispatched to Mα . As Mα is congested, it only
receives a pα -based part of this traffic and Qα(t) hence decreases at rate pα λ (t)∏α−1

i=1 (1− pi)− μα .
iii) Whenever one among the servers Mβ , β ∈ {1, ...,α − 1}, is no longer congested (therefore its semaphore

has been reopened), this server attracts the full incoming workload and hence Mα is not fed anymore. Thus,
Qα(t) decreases at rate −μα .

248

I. Troch, F. Breitenecker, eds. ISBN 978-3-901608-35-3

� ����� ����� ����� ����� ���� ����� �����
�

�

��

��

��

��

	�

	�

�

� �

�
�

� ����� ����� ����� ����� ���� ����� �����
�

�

��

��

��

��

	�

	�

�

� �

�
�

� ����� ����� ����� ����� ���� ����� �����
�

�

��

��

��

��

	�

	�

�

� �

�
�

� ����� ����� ����� ����� ���� ����� �����
�

�

��

��

��

��

	�

	�

�

� �

�
�

Figure 6: Spectrum of the queue content dynamics for interarrival times uniformly distributed in [0.16;0.36]
(λ (t) = 3.8), K = 10, service times uniformly distributed in [0.5;1.5] (μ1 = μ2 = μ3 = μ4 = 1), C1 = C2 = C3 = C4 =
26 and εα = 0.22−0.7(α −1), α ∈ {1,2,3}.

The alternance between these three phases is completely determined by the queue dynamics of the yet engaged
servers. Basically, the time at which a queue starts to empty triggers the feeding of the next server to be en-
gaged. The oscillatory behavior of Qα(t), α ∈ {2, ...,N}, is characterized by maximum and minimum values given
respectively by Eq. (1) and:

Qmin,α = Cα pα λ (t)
α−1

∏
i=1

(1− pi)−1, α ∈ {2, ...,N}.

Consequently, the amplitude of these queue content oscillations is given by:

Δα = Cα λ (t)
α

∏
i=1

(1− pi) , α ∈ {2, ...,N}.

8 References
[1] Abdel-Jaber, H., Woodward, M., Thabtah, F. and Abu-Ali, A.: Performance Evaluation for DRED Discrete-

Time Queueing Network Analytical Model. Journal of Network and Computer Applications, 31 (2008), 750-
770.

[2] Aweya, J., Ouellette, M. and Montuno, D. Y.: A Control Theoretic Approach to Active Queue Management.
Computer Networks, 36 (2001), 203-235.

[3] Bonomi, F. and Kumar, A.: Adaptive Optimal Load Balancing in a Nonhogeneous Multiserver System with a
Central Job Scheduler. IEEE Transactions on Computers, 39/10 (1990), 1232-1250.

[4] Breitgand, D., Cohen, R., Nahir, A. and Raz, D.: Cost Aware Adaptive Load Sharing. Lecture Notes in
Computer Science, 4725 (2007), 208-224.

[5] Breitgand, D., Cohen, R., Nahir, A. and Raz, D.: On Fully Distributed Adaptive Load Balancing. Lecture
Notes in Computer Science, 4785 (2007), 74-85.

[6] Chow, H. K. H., Choy, K. L. and Lee, W. B.: A Dynamic Logistics Process Knowledge-Based System - An
RFID Multi-Agent Approach. Knowledge-Based Systems, 20 (2007), 357-372.

[7] Filliger, R. and Hongler, M.-O.: Syphon Dynamics - A Soluble Model of Multi-Agents Cooperative Behavior.
Europhysics Letters, 70/3 (2005), 285-291.

[8] Floyd, S. and Jacobson, V.: Random Early Detection Gateways for Congestion Avoidance. IEEE/ACM Trans-
actions on Networking, 1/4 (1993), 397-413.

249

Proceedings MATHMOD 09 Vienna - Full Papers CD Volume

��
��
��
�� � ��� ��� ���

����
��

�

��

���

���

���

���

���

�

� �

�
�

� ��� ��� ��	 ��
 � ��� ��� ��	

����
��

�

��

���

���

���

���

���

�

� �

�
�

� ��� ��� ��	 ��
 � ��� ��� ��	

����
��

�

��

���

���

���

���

���

�

� �

�
�

� ��� ��� ��	 ��
 � ��� ��� ��	

����
��

�

��

���

���

���

���

���

�

� �

�
�

Figure 7: Spectrum of the queue content dynamics for interarrival times uniformly distributed in [0.16;0.36]
(λ (t) = 3.8), K = 10, service times uniformly distributed in [0.5;1.5] (μ1 = μ2 = μ3 = μ4 = 1), C1 = C2 = C3 = C4 =
200 and εα = 0.22−0.7(α −1), α ∈ {1,2,3}.

[9] Gallay, O. and Hongler, M.-O.: Cooperative Dynamics of Loyal Customers in Queueing Networks. Journal of
Systems Science and Systems Engineering, 17/2 (2008), 241-254.

[10] Gallay, O. and Hongler, M.-O.: Weariness and Loyalty Loss in Recurrent Service Models. In: Proceedings
of MOSIM’08, Paris, 2008, 2, 1011-1018.

[11] Gallay, O. and Hongler, M.-O.: Circulation of Autonomous Agents in Production and Service Networks.
International Journal of Production Economics, in press.

[12] Hashem, E.: Analysis of Random Drop for Gateway Congestion Control. Report TR-465, MIT Laboratory
of Computer Science, Boston, 1989.

[13] Hülsmann, M., Grapp, J. and Li, Y.: Strategic Adaptivity in Global Supply Chains - Competitive Advantage
by Autonomous Cooperation. International Journal of Production Economics, 114 (2008), 14-26.

[14] Klein, M., Metzler, R. and Bar-Yam, Y.: Handling Emergent Resource Use Oscillations. IEEE Transactions
on Systems, Man, and Cybernetics Part A: Systems and Humans, 35/3 (2005), 327-336.

[15] Lämmer, S. and Helbing, D.: Self-Control of Traffic Lights and Vehicle Flows in Urban Road Networks.
Journal of Statistical Mechanics: Theory and Experiment, 4 (2008), art. no. P04019.

[16] Lee, L. S., Fiedler, K. D. and Smith, J. S.: Radio Frequency Identification (RFID) Implementation in the
Service Sector: A Customer-Facing Diffusion Model. International Journal of Production Economics, 112
(2008), 587-600.

[17] Pingali, S., Tipper, D. and Hammond, J.: The Performance of Adaptive Window Flow Controls, in a Dynamic
Load Environment. In: Proceedings of IEEE INFOCOM ’90, 1990, 55-62.

[18] Kumara, S. R. T., Ranjan, P., Surana, A. and Narayanan, V.: Decision Making in Logistics: A Chaos Theory
Based Analysis. Annals of the CIRP, 52/1 (2003), 381-384.

[19] Surana, A., Kumara, S. R. T., Greaves, M. and Raghavan U. N.: Supply-Chain Networks: A Complex
Adaptive Systems Perspective. International Journal of Production Research, 43/20 (2005), 4235-4265.

[20] Tzeng, S.-F., Chen, W.-H. and Pai, F.-Y.: Evaluating the Business Value of RFID: Evidence Form Five Case
Studies. International Journal of Production Economics, 112 (2008), 601-613.

[21] Wycisk, C., McKelvey, B. and Hülsmann, M.: "Smart Parts" Supply Networks as Complex Adaptive Sys-
tems: Analysis and Implications. International Journal of Physical Distribution & Logistics Management,
38/2 (2008), 108-125.

250

I. Troch, F. Breitenecker, eds. ISBN 978-3-901608-35-3

