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Abstract. In this paper, the simplified and nonstationary balance-based model is presented. The 

form of the model is unified and it results from the widely known idea of the mass or energy bal-

ance equation, which may contain the nonlinear terms describing the reactions or heat ex-

change/production phenomena. Usually, there is a large uncertainty on the detailed description of 

these terms and thus, in the suggested form of the model, they are represented by the only one time 

varying parameter, that must be estimated on-line. This approach is general and it benefits from 

the bilinear affine balance-based form. The estimation procedure always converges, which ensures 

high modelling accuracy. The model requires the feedback from the measurement data of the proc-

ess output as well as of the disturbances and thus it is suitable only for the model-based control 

with the possible feedforward action, not for the quantitative considerations. 

1 Introduction
In this paper, the simplified balance-based modelling for model-based control design is suggested. The idea 

benefits from the general and unified balance-based form applied for modelling biochemical processes for dec-

ades [1,2,3,7,10]: 

rate of accumulation =(measurable) inflow – (measurable) outflow ± (unknown) RY, (1) 

In the above model, the measurable signals are included as the (measurable) inflow and outflow and these terms 

represent the so-called balance-based part. The parameter RY is a positive or negative time-varying term, which 

represents one global reaction including all reversible and/or irreversible reactions or heat lost and/or production 

with nonlinear and unknown decryption. In other words, in the suggested form of the model (1) all the known 

and measurable quantities are included in the measurable terms while all the fluxes, for which the description 

must be considered as unknown, are represented by one time-varying parameter RY. 

In the advanced control systems there are usually a number of measurable disturbances that provide the feedfor-

ward action. Actually, the feedback from the measurement data can be applied not only for this action, but also 

as a source of information for nonstationary modelling. In [7], the authors suggest the minimum modelling of the 

unknown terms based on the on-line estimation and observer design while in [8] the methods for the on-line 

model parameterization are presented. Both approaches lead to nonstationary modelling. The nonstationary ap-

proach presented in this paper is more general because it is based on the unified form of the simplified model 

with only one unknown parameter RY (representing the modelling inaccuracies and uncertainties) that must be 

estimated on-line. 

2 General form of the balance-based model 
The suggested model is based on the Eq. (1) and has the form of the first-order dynamic equation describing 

directly the process output Y(t), which can be chosen as one of state variables (a component concentration or the 

temperature) or as a combination of two or more state variables [4]. A process itself, taking place in a tank of 

time varying volume V(t) [m3], can consist of a number of isothermal or nonisothermal biochemical reactions 

and/or heat production and lost phenomena with unknown description. 
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The vector product )t(Y)t(F
F

T
 represents the measurable terms of Eq. (1) while RY(t) is a positive or negative 

time varying term and its description is assumed to be unknown. It represents all modelling inaccuracies and 

uncertainties. Let us note that Eq. (2) has a generalized form of a state equation describing Y(t) and, after simpli-

fication, it can be taken directly from a complete mathematical model of a process or easily derived by the gen-

eral mass or energy balance considerations. 

Eq. (2) can be a basis for the model-based controller under the following assumptions: 

C the control variable must be chosen as one of the elements of the vectors )t(F  or )t(YF , 

C the other elements of the vectors )t(F  and )t(YF  as well as the value of Y(t) must be measurable on-

line at least at discrete moments of time or they should be known by choice of the user, 

C the volume of a reactor tank V(t) must be measurable on-line or known if V = const. 
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These limitations are realistic because they allow for very large modelling uncertainty. They also ensure that Eq. 

(2) always has the bilinear affine form. 

The simplified model (2) can be always satisfied because it is always possible to find the value of RY(t) that 

satisfies this equation at the particular moment of time. Because the value of RY(t) can vary in time, it is obvious 

that Eq. (2) can be satisfied at each moment of time by the appropriate choice of the value of RY(t). The form of 

Eq. (2) ensures that there is always only one unknown parameter RY that must be estimated on-line to provide 

nonstationary modelling and to ensure high modelling accuracy. The estimation procedure is based on the discre-

tised form of Eq. (2) with the backward first-order approximation of the time derivative of Y(t): 

� � i,YRii,F

T

iR1iii RTVYFTYYV 	�	> 	 ,    (3) 

where i denotes the discretisation instant, TR is the sampling time and Ç  (0,1] represents the gain parameter, 

which allows for limiting the transient values of the approximation of the time derivative in the cases when the 

measurement data is noisy or when the system is strongly nonlinear with very fast dynamics. Then let us define 

the auxiliary variable yi: 

� �
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Combining Eqs. (3) and (4) allows for application of the well-known recursive least-squares (RLS) method with 

the forgetting factor È, which results in the following estimation procedure of the unknown value : i,YR
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The scalar form of the estimation procedure results from the fact that there is always only one unknown parame-

ter that is to be estimated. It ensures the convergence of the estimation without any additional excitation input 

signals that are usually necessary to guarantee the persistence of excitation for the on-line multiparameter identi-

fication [5]. In fact, even in the steady state the estimate  always converges to its true value RYR̂ Y with the rate 

of convergence depending only on the value of the forgetting factor È [6]. 

3 Illustrative example 
In the example vessel of constant volume V = 10 [L] (see, Fig. 1) there are two incoming flow rates: of cold 

water F1 = 1 [L/h] and of hot water F2 = 1 [L/h] with two corresponding inlet temperatures Tin1 20 [oC] and      

Tin2 = 80 [oC]. The uncertainties in the system result from the unknown heat removal and from the fact that the 

outlet temperature Tout [
oC] is measured by the sensor located at the output of the pipe of length L = 10 [m] and 

of the cross section A = 0.0001 [m2], which introduces significant transportation time delay                            

Td = (L*A)/(F1+F2) [h] in the system. All the input quantities are assumed to be measurable on-line and the vol-

ume V is known. The modelled output is the outlet temperature Y = Tout, which is also measurable on-line. 
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Figure 1. Simplified diagram of the example mixing vessel of cold and hot water 

The general heat balance considerations lead to the dynamic equation presented below, in which the uncertain-

ties resulting from the heat removal and from the not modelled transportation time delay, are represented by the 

unknown parameter RY: 
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Defining the vectors 5 6T21 )t(F)t(F)t(F � , � � � �5 6T2in1inF
)t(Y)t(T)t(Y)t(T)t(Y 		�  shows that Eq. (6) has the 

form of the general Eq. (2) and it meets the requirements defined for that model. 
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The upper diagram of Fig. 1 shows the comparison between the variations of the output of the “true” system with 

the modelled heat lost and time delay and the output of the simplified model (6) with the on-line estimation car-

ried out according to the estimation procedure (5). The lower diagram shows the corresponding variations of the 

“true” value of Ry calculated for the system with heat lost but without the time delay, which in the practice is 

unknown, in comparison with the estimated value of RY calculated for the simplified model (6). The experiment 

has been carried out according to the following scenario. The system is operated at the steady state and the esti-

mation procedure (with the forgetting factor È = 0.1 and with Ç = 1) starts at t = 2. Then, at t = 5 the step change 

of the measurable inlet Tin1 is applied. At t = 20 the bias error for the measurement of Tin1 is applied, which does 

not influence the system but influences the model by the biased measurement of Tin1, introducing additional 

modelling inaccuracy. Finally, at t = 30 the flow rate F1 is changed, which influences not only the outlet tem-

perature but also decreasing the transportation time delay. 
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Figure 2. Modelling accuracy with corresponding estimation 

Let us note that, despite of the very large modelling uncertainty, it is impossible to distinguish between the out-

put of the “true” system and the output of its simplified model (6). Note that Eq. (6) does not include any de-

scription for the heat lost and for the significant time delay varying according to the changes of F1 and equal Td = 

5 [h] at the steady state. The model (6) represents the first-order dynamic while the presence of the time delay 

significantly increases the relative order of the “true” system. This mismatch is compensated by the estimation 

procedure, which can be seen in the lower diagram of Fig. 2. After t = 5 the output of the model still tracks the 

output of the “true” system at the price of the bias between the “true” value of RY and its estimate. The bias dis-

appears after the time delay, when the temperature in the vessel and the measured temperature at the outlet of the 

pipe Tout equalizes. At t = 20 the measurement error for the inlet temperature Tin1 is introduced and the estima-

tion procedure compensates for it at the price of the bias, which exists as long as the measurement error exists. In 

result, practically there is no influence of this error on the modelling accuracy. The variation of the time delay 

resulting from the change of the flow rate F1 also has no practical influence on the modelling accuracy due to the 

compensating properties of the estimation procedure. 
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The experiment has been carried out without measurement noise, which allowed for the very small value of        

È = 0.1 and for Ç = 1. In the presence of the significant measurement noise there is a need to adjust higher value 

of È and smaller value of Ç but it must be kept in mind that too large value of È increases the convergence time 

for the estimation procedure and thus it may degrade the modelling accuracy in transients. 

4 Conclusions
In this paper, the unified and simplified form of the balance-based model has been presented. It always has the 

form of the first-order dynamic equation and it always includes only one unknown parameter, which represents 

all the modelling inaccuracies and uncertainties. This model is suitable only for model based control because it 

requires the feedback from the measurement data of the system output and of the measurable disturbances. The 

final form of the suggested model can be derived on the basis of the general well-known mass or energy balance 

law and thus it is very easy to understand for industrial engineers because it does not require the use of any so-

phisticated mathematics. 

The unknown parameter must be estimated on-line but the scalar form of the RLS estimation procedure is very 

simple and also very general and unified. The on-line estimation ensures very good modelling accuracy despite 

of the very simple form of the suggested model. Namely, the model has the following features: 

C It is resistant to the modelling inaccuracies resulting from the unknown description of the nonlinear terms 

representing the biochemical reactions or heat lost/production. The unknown terms can be included in the 

parameter RY and estimated on-line. 

C The estimation procedure can also compensate for the mismatch between the order of the true system and 

the first order of the simplified model. The presence of the time delay does not degrade the modelling ac-

curacy, even in the case when this time delay varies according to the changes of the operating point. 

C In the practice, sometimes the sensor failure occurs, which may result in the constant indication or the 

measurement bias. As it was shown in the paper, the suggested simplified model can manage this problem 

without significant influence on the modelling accuracy, again due to the compensating properties of the 

estimation procedure. 

C The model can be tuned for the case when the measurement noise is present. It requires the adjustment of 

the forgetting factor È and of the parameter Ç. However, the practical advice is to keep the value of È as 

small as possible to ensure possibly the smaller convergence time for the estimation procedure. 

The model can stand as a basis for the model-based control strategies, for example as PMBC [9], B-BAC [4,6]. 

The most important feature of the suggested model if the fact that modelling at the steady state is always very 

accurate, even if the modelling of the transients may be slightly inaccurate. Namely, there is no bias between the 

output of the system and the output of the model, which ensures that in the case of the model-based control there 

is no regulation offset and thus there is no need to include the integration in the final form of the control law. 
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