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Abstract. The Exp-function method is used to obtain exact solution for some nonlinear evolution 
equations arising in mathematical physics using symbolic computation. The KZK (Khokhlov-
Zaholotskaya-Kuznetsov) equation is chosen to illustrate the effectiveness and convenience of the 
method.
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1 Introduction
Many new approaches have been proposed to introduce analytical solutions to nonlinear evolution equations. 
Many new approaches with advantages on the one hand and disadvantages on the other hand have been sug-
gested to solve various nonlinear equations, such as the variational iteration method [1], the homotopy perturba-
tion method [2], the tanh-method [3], the sinh-method [4], the homogeneous balance method [5], the F-
expansion method [6], the extended Fan’s sub-equation method [7]. A complete review is available in Ref. [8].

The Exp-function method introduced by [9] has been developed to find solitary solutions, compact-like solutions 
and periodic solutions for nonlinear evolution equations in mathematical physics. In this study, we focus on 
KZK equation. There are some numerical methods for solving KZK equation that nearly all of them are based on 
finite difference method. To date, no explicit analytical solutions exist for the KZK equation. 

When an acoustic source of finite size radiates into free space, the effects of diffraction must be considered. The 
KZK nonlinear parabolic wave equation [10] is known to describe accurately the propagation of a finite ampli-
tude sound beam by including, to the lowest order, the combined effects of diffraction, absorption, and nonlin-
earity; in addition, it models the propagation of plane wave finite amplitude sound beam [11]. 

In the derivation of the KZK equation, the sound waves are assumed to form a directive beam that permits a 
parabolic approximation to be made in the terms which account for diffraction. The parabolic approximation 
introduces errors at field points that are far away from the acoustical axis (e.g., more than 20O off axis), and at 
near field (e.g. locations close to the source). However, these restrictions are relatively weak in practice, and the 
main regions of interest in a directive beam are accurately modelled by the KZK equation [11].

The behaviour of Burgers equation solution represents shock waves in propagation of mechanical waves; the 
KZK equation is somehow more general than Burgers equation and in fact it is a perturbation of Burgers equa-
tion and hence the diffraction effect is modelled in it. In previous studies some solutions are prepared for Burgers 
equation, but no analytical solution is proposed for KZK. Therefore, we discuss solutions of KZK equation with
defi nite boundary conditions by Exp-function in this letter.

2 Summary of Exp-function Method
We consider a general nonlinear partial differential equation (PDE) in the form

x y z t xx yy zz tt xy xt ytF(u,u ,u ,u ,u ,u ,u ,u ,u ,u ,u ,u ,...)=0, (1) 

we introduce complex variation ξ defined as

=ax+by+cz+dt+ ,ξ ϕ (2) 

where , ,a b and c are constants, using a transformation

u(x,y,z,t)=u( ),ξ

We can rewrite Eq. (1) in the following nonlinear ordinary differential equation (ODE):
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G(u,u',u'',u''',...)=0, (3) 

where the prime denotes the derivation with respect to ξ .

The basic idea of the exp-function method is very simple; it is based on the assumption that travelling wave 
solutions can be expressed in the following form [12]:

g

n=-f
q

m=-p

an exp(n )
u( )=    ,

bm exp(m )

ξ
ξ

ξ

∑

∑
(4) 

where f, g and q, p are positive integers which are unknown and will be further determined in our presention, 

and na and mb are unknown constants to be determined later.

Eq.(4) can be re-written in an alternative form as follows:

g -f

q -p

a  exp(g ) +  ... +  a  exp(-f )
u( )=    ,

b  exp(q ) +  ... +  b  exp(-p )
ξ ξ

ξ
ξ ξ

(5)

We present Exp-function method application in the nonlinear KZK equation.

3 KZK equation
Anna Rozanova-Pierrat considers the KZK equation t x xx x y(u -uu - u ) - u=0,β γΔ which describes for instance 
the propagation of sound beam in a nonlinear media. It is used in acoustical problems as a mathematical model 
which describes the pulse finite amplitude sound beam nonlinear propagation in the thermo-viscous medium 
[13].  
The KZK equation for a non-axisymmetric sound beam that propagates in the positive direction (Fig. 1) can be 

written in terms of the acoustic pressure as follows [11]: 

20
zt xx yy ttt tt t3 3

0 0 0

c Dp = (p +p  )+ p + (p +p )
2 2c c

β
ρ

With boundary condition:

2

0( , ,0, ) . ( , ). ( )

( ) .sin( )
1        -1 1  ,  -1 1 

( , )
0         Otherwise.

t
T

p x y t p g x y f t

f t e t
x y

g x y

⎛ ⎞−⎜ ⎟
⎝ ⎠

=

=

≤ ≤ ≤ ≤⎧
= ⎨
⎩

(6)

We consider the KZK equation
2

zt xx yy ttt t ttp (p +p  )- p -p -pp 0.γ β− = (7)
Introducing a complex variation defined as 

=ax+by+cz+ t+ ,ξ ω ϕ (8)
making the transformation (8), Eq.(7) becomes

2 2 3 2 2cp''- (a +b  ) p''-  p'''-  p-  pp''=0.ω γ βω ω ω (9)

For Eq.(5) to determine the values and , following the balancing procedure [12],we balance the linear term 

of highest order in Eq.(9) with the highest order nonlinear term. Similarly, to determine the values of and , 
we balance the linear term of lowest order in Eq.(9) with the lowest order nonlinear term.
The highest linear term is now given by

1

2

exp[(7q+g ) ] ...'''
exp[ 8q ] ...

Cp
C

ξ
ξ

+
=

+
(10)

and
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3 3

4 4

exp[( 3q+2g ) ] ... exp[( 6q+2g ) ] ...'' ,
exp[ 5q ] ... exp[ 8q ] ...

c cpp
c c

ξ ξ
ξ ξ

+ +
= =

+ +
(11) 

where are coefficients for simplicity. By balancing highest order of Exp-function in Eqs. (10) and (11), we 

have 7q+g=6q+2g,
which leads to the limit q=g.
Proceeding the same manner as illustrated above, we can determine values of and . Balancing the linear term 
of lowest order in Eq.(9) 

1

2

... exp[ (7p+f ) ]'''
... exp[ 8p ]
dp
d

ξ
ξ

+ −
=

+ −
and

3 3

4 4

... exp[ ( 3p+2f ) ] ... exp[ (6p+2f ) ]'''
... exp[ 5p ] ... exp[ 8p ]
d dp

d d
ξ ξ

ξ ξ
+ − + −

= +
+ − + −

Therefore, we can obtain the following relation -(7p+f)=-(6p+2f), resulting in p=f.

4 Solution
We For simplicity, we set q=g=1 and p=f=1, thus Eq.(5) becomes:

1 0 -1

1 0 -1

a  exp( ) +a  ... +  a  exp(- )p( )=
b  exp( ) +b + b  exp(- )

ξ ξξ
ξ ξ

(12)

Substituting Eq.(12) into Eq.(9), we have:

3 2 1 0 1 2 3

1
[ exp( 3 ) exp( 2 ) exp( ) exp( ) exp( 2 ) exp(3 )] 0A C C C C C C Cξ ξ ξ ξ ξ ξ− − −− + − + − + + + + =

Setting the coefficients of exp( )nξ to zero and solving them, we obtain the following sets of results:

4.1 Case 1
2 3 2

0
0 2

2 3 2
-1

-1 2

2 2

( )

( )

0      b 0

b a c ba

b a c ba

a

γ βω γ ω
ω

γ ω βω γ
ω

⎧ + − +
=⎪

⎪
⎪ − + +

=⎨
⎪

= =⎪
⎪
⎩
Where -1 0b, ,a,b ,b ,cω and ϕ are free parameters
Substituting these results into (12), we obtain the following exact solution

2 3 2 2 3 2
1 0

2
1 0

( ) ( )
( )

b a c b e b a c bu
b e b

ξ

ξ

γ ω βω γ γ βω γ ω
ω

−
−

−
−

− − + + + − + − +
=

+
(13)

4.2 Case 2
2 3 2

-1
-1 2

2 3 2
1

0 2

0 0

( 2 )

( 2 )

0      b 0

b a c ba

b a c ba

a

γ βω γ ω
ω

γ ω βω γ
ω

⎧ + + −
=−⎪

⎪
⎪ − + + −

=⎨
⎪

= =⎪
⎪
⎩
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Where -1 1b, ,a,b ,b ,cω and ϕ are free parameters. Substituting these results into (12), we obtain the following 
exact solution:

2 3 2 2 3 2
-1 2

2
1 1

( 2 ) ( 2 )
( )

b a c b e b a c b eu
b e b e

ξ ξ

ξ ξ

γ βω γ ω γ ω βω γ
ω

−

−
−

− + + − + − + + −
=

+
(14)

4.3 Case 3

0
a ib
ω
=⎧

⎨ =⎩
Where -1 0 1 -1 0 1b,b ,b ,b ,,a ,a ,a ,c and ϕ are free parameters.
Substituting these results into (12), we obtain the following exact solution:

1 0 1

1 0 1

a e a a eu ibx by cz
b e b b e

η η

η η η ϕ
−

−
−

−

+ +
= = + + +

+ +
(15)

4.4 Case 4
2 2 2 2 2 2

0 1 1 0 1 1 0 0 1 1 0 1 1 0
0 2 2 3

1
2 2 2 2 2 3 2 2

1 0 1 1 0 1 1 0 0 1 1 0 1 0 1 0
-1 2 2 4

1
2 3 2 2 2 2 2 2 3

0 1 0 1 0 1 0 0 1
2 2 4

1
2 3 2

1 1 1

( 2 2 2 )1
4

( 4 2 -6 )1
4

(2 4 4 )1
4

(-

a b ab b ab a b a b ab bb
b

a a b a b b a b a b a b a a b ba
b

a b b ab b a bb
b

a b bac

βω βω
β ω

βω βω
β ω

βω β ω β ω
β ω

ω βω γ γ

− − + +
=−

− + + −
=

− +
+

− + − −
=

2
1

1

)bb
bω

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎩
Where 0 0 1 1b, ,a,b ,a ,a ,b ,ω and ϕ are free parameters.ubstituting these results into (12), we obtain the follow-
ing exact solution:

2 2 2 2 2 3 3 2 2
1 1 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 1 0 0 1

2 2 2 2 2 2 2 2 3
0 1 1 0 1 1 0 0 1 1 0 0 1 0 0 1 1

2 2 2 2 2 2 2 2 3 2 2
1 0 1 1 0 1 0 1 0 0 1

( 4 2 6 )
( -2 -2 +2 ) 4( )

( 2 4 4 ) 4( )

b a a b a b b a b a b a b a b a b a b a b eu
a b a b b a b a b a b a b b e b b e b

b a b a b b a b b e a a e b

η

η η

η η

βω βω
βω βω β ω

βω β ω β ω β ω

−

−

−

− + + − − −
=
− + + +

− + + +
+

4
1

2 2 2 2 2 2 2 2 3
0 1 1 0 1 1 0 0 1 1 0 0 1 0 0 1 1

2 3 2 2
1 1 1 1

1

( -2 -2 +2 ) 4( )

( + - - ) ,

a b a b b a b a b a b a b b e b b e b
a b b a b bax by z t

b

η ηβω βω β ω

ω βω γ γη ω ϕ
ω

−− + + +

−
= + − + +

(16)

Here, we only discuss the more general solution (Eq.(14)). Consequently , the solution is given, at -1 1b b ,= by:
2 3 2

2

2 tanh( )a b cu γ βω ξ γ ω
ω

+ − +
= (17)

If q=g=n, p=f=m and m, n>1, we obtain new cases that some of them are like previous cases and others are new, 
providing more boundary conditions. 

5 Conclusion
We were able to obtain an exact solution in KZK equation for a specific boundary condition; i.e. for conditions 
in which the Eq. (17) is satisfied. This can be used to represent the behavior of step shock, which is a known 
phenomenon in the propagation of nonlinear ultrasound wave.  
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We could not find exact solutions for Eq. (9) with boundary condition (6) using exp-function method. It seems 
that continuing our research to find these solutions will aid in different scientific fields such as ultrasound, fluid 
dynamics, etc.

The performance of the Exp-function method is reliable, effective, and gives more solutions compared to other 
analytical methods which were already used. An increase in the cases of results in future works can provide 
wider boundary conditions and more applications.

Our results showed that based on the Exp-function method, some nonlinear evolution equations can be solved 
exactly. The validity of this method has been tested by applying it successfully to the KZK equation. The main 
advantage of this method is that it can be applied to a wide variety of nonlinear evolution equations. It may be 
concluded that the Exp-function method can be easily extended to many kinds of nonlinear equations.
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