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Abstract. This paper presents a robust control approach for the class of MIMO input-output lin-
earizable nonlinear systems with modeling errors. As known, the exact feedback linearization method
can be applied to control input-output linearizable nonlinear systems, if all the states are available for
control and the system model is precise. The mentioned two aspects are exactly the key problems of
this classical nonlinear control method. To the first point, the information of the system states can
be obtained by measurements or estimations from an observer design. Secondly, modeling errors can
be allowed in general. The solution approach developed in this contribution is to reduce/compensate
the effects of modeling errors by a feedback of the estimated modeling error calculated by a specific
high-gain disturbance observer. At the same time, the non-measured states of the transformed system
can also be estimated. Comparing with other possible robust control methods for nonlinear system, the
proposed approach offers not only a robust control design, but also the estimation of disturbances. This
idea was for SISO cases partially proposed in [1]. In this contribution, the approach is extended and
proved for general input-output linearizable nonlinear systems. A detailed instruction of the approach
for applications on mechanical systems is given. An example of nonlinear MIMO systems is given to
illustrate the application and the success of the approach.

1 Introduction
The lack of robustness of the classical nonlinear control method, the exact feedback linearization method, strongly
limits its application. Many researches (e.g. in [2, 3]) have developed different methods to solve this problem.
However, in most of the methods the modeling errors or the disturbance are considered with known bounds and
dynamics. The approach discussed in this paper takes no information or assumptions from the dynamics of the
modeling errors and disturbances, because the modeling errors and disturbances can be estimated together with the
system states by a high-gain PI-Observer.

The high-gain PI-Observer is a disturbance observer, that estimates both the system states like a Luenberger ob-
server and additionally the disturbances as external inputs acting to the system. It takes additionally the integration
of the estimation errors as input to the observer and therefore generates some extended states [4]. The PI-Observer
concept has been developed by many authors [5, 6, 7] for different purposes, in [5, 6] mainly to improve the ro-
bustness of the state estimations. In [7], the goal is to use the PI-Observer approach to estimate both the original
states and the extended states with high gains, which is exactly the function of the PI-Observer used here.

The key points in this contribution are the combination of the advantages of the exact feedback linearization method
and the PI-Observer and the application of the approach to mechanical systems.

The paper is organized as follows: in the second chapter, the considered group of nonlinear systems with distur-
bances/uncertainties and the robustness problem are stated. In the third chapter, the PI-Observer design is briefly
introduced. Then, the proposed robust control approach is detailed in the fourth chapter. The instruction of its
application on mechanical systems is given in the fifth chapter with an example. The last chapter concludes this
paper.

2 Problem Statement
The nominal model of the considered nonlinear systems can be described by

ẋ = f (x)+g(x)u, (1)

y = h(x), (2)

where x ∈ Rn denotes the state vector, u ∈ Rr the input vector, y ∈ Rm the output to be controlled. It is assumed
that the vector fields f (·) on Rn, g(·) on Rn×r, and h(·) on Rm are smooth. The nominal model of the system is
assumed as input-output linearizable and the remaining zero dynamics is assumed to be stable. Note that to realize
the input-output linearization in MIMO case the number of the inputs should equal to the number of the outputs,
namely m = r.
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If the modeling errors, disturbances, and other unknown effects acting on the nonlinear system are considered as
external unknown inputs of the system (1) denoted by Nn(x, t), an ’exact’ system model can be set up by

ẋ = f (x)+g(x)u+Nn(x, t), (3)

y = h(x), (4)

where the matrix N =
[

Ncol1 · · · Ncolp

]
=

⎡⎢⎣ Nrow1

...
Nrown

⎤⎥⎦∈Rn×p that locates the external unknown inputs n(x, t)∈

Rp is assumed as known. The dimension of the unknown inputs is assumed as p, 0 < p ≤ n. For unknown matrix
N some strategies are already proposed [8] and will not be detailed in this paper.

With the classical input-optput linearization method [9], the model (3) can be transformed into the following form⎡⎢⎢⎣
y(r1)

1
...

y(rm)
m

⎤⎥⎥⎦ =

⎡⎢⎣ v1

...
vm

⎤⎥⎦+ Ñ(x)n(x(t), t), (5)

by choosing the inputs as

u = −E−1(x)

⎡⎢⎢⎣
Lr1

f h1(x)
...

Lrm
f hm(x)

⎤⎥⎥⎦+E−1(x)

⎡⎢⎣ v1

...
vm

⎤⎥⎦ , (6)

where

E(x) =

⎡⎢⎢⎣
Lg1

Lr1−1

f h1(x) · · · LgmLr1−1

f h1(x)
...

. . .
...

Lg1
Lrm−1

f hm(x) · · · LgmLrm−1

f hm(x)

⎤⎥⎥⎦ , (7)

Ñ(x) =

⎡⎢⎢⎣
LNcol1

Lr1−1

f h1(x) · · · LNcolp
Lr1−1

f h1(x)
...

. . .
...

LNcol1
Lrm−1

f hm(x) · · · LNcolp
Lrm−1

f hm(x)

⎤⎥⎥⎦ . (8)

From Eq.(5), it can be seen clearly that with the classical input-output linearization the transformed system equation
is sensitive to the modeling errors, which is the key problem of the classical nonlinear method. For real applications
of this control approach it has to be assumed that i) the states are measurable and ii) the model has to be known so
that the transformation can be defined as known.

3 PI-Observer Design
In this chapter, the PI-Observer design developed in [10] is introduced briefly.

For systems described by

ż = Az+Bu+Nn(z, t), y = Cz, (9)

with the state vector z of order n, the input vector u of order l, the measurement vector y of order m, and the
time variant and unknown external input vector n(t) of order r. The states z and the unknown inputs n(t) can be
estimated by a PI-Observer design[

˙̂z
˙̂n

]
=

[
A N
0 0

]
︸ ︷︷ ︸

Ae

[
ẑ
n̂

]
+

[
B
0

]
︸ ︷︷ ︸

Be

u+
[

L1

L2

]
︸ ︷︷ ︸

L

(y− ŷ),

ŷ =
[

C 0
]︸ ︷︷ ︸

Ce

[
ẑ
n̂

]
, (10)

if the extended system (Ae, Ce) is fully observable. This includes the condition

rank

⎡⎣ λ In −A −N
0 λ Ir
C 0

⎤⎦ = n+ r
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for all λ of det [λ I −A] = 0. This condition includes that the dimension of the unknown input vector n(t) has to
be less than or equal to the number of independent measurements, namely r ≤ m (proofs refer to [10, 11]).

Based on Eq. (15), the estimation errors as e = ẑ− z and fe = n̂−n, the error dynamics of the extended system are[
ė
ḟe

]
=

[
A−L1C N
−L2C 0

]
︸ ︷︷ ︸

Ae,obs

[
e
fe

]
−

[
0
ṅ

]
. (11)

With suitable observer gain matrix L, the PI-Observer can estimate at the same time both the system states and the
unknown external inputs.

4 Proposed Approach
From Eq.(5), m decoupled motions can be found and a uniform equation (12) can be used to describe the motions,

y(ri)
i = vi +

p

∑
j=1

LNcol j
L(ri−1)

f hi(x)n j(x, t), i = 1, · · · ,m, (12)

which can be written in a state space form

ẋ = Ax+bu+ N̄n̄, (13)

y = cx, (14)

with state vector x =

⎡⎢⎢⎢⎣
yi
ẏi
...

y(ri)
i

⎤⎥⎥⎥⎦, system matrix A =

⎡⎢⎢⎢⎣
0 1 · · · 0
... 0

. . . 0
0 · · · 0 1
0 · · · · · · 0

⎤⎥⎥⎥⎦
ri×ri

, input matrix b =

⎡⎢⎢⎢⎣
0
...
0
1

⎤⎥⎥⎥⎦
ri×1

,

matrix N̄ =

⎡⎢⎢⎢⎣
0
...
0
1

⎤⎥⎥⎥⎦
ri×1

, output matrix c =
[

1 0 · · · 0
]

1×ri
, input u = vi,

disturbance n̄ =
p

∑
j=1

LNcol j
L(ri−1)

f hi(x)n j(x, t). In this case, it is obvious that the system is fully controllable and

fully observable according to (A,b) and (A,c).

Based on the information in the last chapter, the decoupled motions has exactly an appropriate structure for a
PI-Observer design. Therefore, m PI-Observers can be constructed for the m motions separately, for example[

˙̂x
˙̂̄n

]
=

[
A N̄
0 0

][
x̂
ˆ̄n

]
+

[
b
0

]
u+

[
L1

L2

]
(y− ŷ),

ŷ =
[

c 0
][

x̂
ˆ̄n

]
. (15)

With properly chosen observer gain matrices L1 and L2 [10], which have the corresponding dimension ri ×1 and
1×1 and fulfill the conditions mentioned in chapter 3, the transformed states and the transformed disturbances can
be estimated with the PI-Observer.

As a robust control, the state feedback control u = Kx̂ − N̄ ˆ̄n can be taken to stabilize the transformed system
dynamics, because the estimations x̂ and ˆ̄n are available from the PI-Observer and the transformed system is fully
controllable. With the help of Eq.(6) the inputs to the original system can be calculated. At the same time from the
m PI-Observers m external inputs/disturbances n̄ can be estimated in the transformed coordination and maximum
m independent disturbances in the original coordinates can be therefore regenerated/calculated. Of course all the
states and outputs in the original coordinates should be available to realize the input-output linearization as usual
and this will be explained specifically for mechanical systems.

The whole control loop will be stable, while the transformed system dynamics is stabilized and the remaining zero
dynamics of the input-output linearization is assumed stable.
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5 Application on mechanical systems
Without loss of generality nonlinear MIMO mechanical systems can be described by n second order differential
equations⎡⎢⎣ ẍ1

...
ẍn

⎤⎥⎦ =

⎡⎢⎣ f1(x1, ẋ1, · · · ,xn, ẋn)
...

fn(x1, ẋ1, · · · ,xn, ẋn)

⎤⎥⎦+

⎡⎢⎣ g11(x1, ẋ1, · · · ,xn, ẋn) · · · g1r(x1, ẋ1, · · · ,xn, ẋn)
...

. . .
...

gn1(x1, ẋ1, · · · ,xn, ẋn) · · · gnr(x1, ẋ1, · · · ,xn, ẋn)

⎤⎥⎦u

+

⎡⎢⎣ d1(x1, ẋ1, · · · ,xn, ẋn, t)
...

dn(x1, ẋ1, · · · ,xn, ẋn, t)

⎤⎥⎦ , (16)

ymeas =

⎡⎢⎣ x1

...
xn

⎤⎥⎦ , (17)

ycontr =

⎡⎢⎣ y1

...
ym

⎤⎥⎦ . (18)

Note that 2n states are required to describe the system dynamics from the n second order differential equations.
Usually the 2n states are chosen as n displacements and the related n velocities. Here the n displacements are
assumed as measurements ymeas and the number of the inputs u and the number of the outputs to be controlled
ycontr are the same. Some of the displacements are assumed to be controlled. The system (16) can be written by 2n
first order differential equations in a general form

ẋ = f (x)+g(x)u+Nd(x, t),
ycontr = h(x) = Cx, (19)

with 2n states, if the state vector is taken as x =

⎡⎢⎢⎢⎢⎣
x1

ẋ1

...
xn
ẋn

⎤⎥⎥⎥⎥⎦ and corresponding f (x), g(x), N, d(x, t), and C are

considered.

If the system described in (19) is input-output linearizable and the number of independent disturbances in d(x, t)
is less than m, a robust control design with the proposed method can be applied.

For the nonlinear feedback in the input-output linearization process in (6)-(8), usually all the system states, the
outputs, and the derivatives of the outputs in the original coordinated are required. In the application on mechan-
ical systems it can be seen that the outputs to be controlled are usually the displacements which are assumed as
measurements and the derivatives of the outputs can be obtained directly from the PI-Observers. The velocities,
which are also states in the original coordinates, can be estimated by PI-Observers as the states in the transformed
coordinates when the corresponding displacements are to be controlled. Otherwise additional PI-Observers can be
designed to estimate the velocity based on the measured displacement. This will be shown with the example in
next chapter.

Another important point is that the estimation of modeling errors/disturbances in the original coordinates is avail-
able based on the estimations of the PI-Observers.

6 Application Example
An example of nonlinear MIMO mechanical systems, shown in Fig. 1 [12], is given to illustrate the proposed
method. The system can be modeled by

mẍ1 = k(−2x1 + x2)+ kp[−x3
1 +(x2 − x1)3]+u1 +d1, (20)

mẍ2 = k(x1 −2x2 + x3)+ kp[(x3 − x2)3 − (x2 − x1)3]+u2 +d2,

mẍ3 = k(x2 − x3)+ kp(x2 − x3)3 +d3,

ymeas =
[

x1 x2 x3

]T
,

ycontr =
[

y1 y2

]T =
[

x1 x3

]T
,
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where the dynamics of the disturbances d1, d2, d3 are unknown to the control design and taken in the simulation as
d1 = 0, d2 = 100sin(10t)+500, and d3 = 0.2d2.

m

u1

x1

x2

x3

d d
1

2 d3

m

u2

m

Figure 1: Nonlinear MIMO mechanical system example

The input-output linearized form of the system can be written in

ÿ1 = v1 +
d1

m
= v1 + n̄1, (21)

y2
(4) = v2 +[

k
m

+
3kp

m
(x2 − x3)2](

d2

m
− d3

m
) = v2 + n̄2, (22)

if the inputs are chosen as

u1 = m
[

v1 − k
m

(−2x1 + x2)− kp

m

[−x3
1 +(x2 − x1)3

]]
, (23)

u2 =
m

k
m + 3kp

m (x2 − x3)2

{v2 −
[

k
m

+
3kp

m
(x2 − x3)2

][
k
m

(x1 −3x2 +2x3)+
kp

m

[
2(x3 − x2)3 − (x2 − x1)3

]]
(24)

−6
kp

m
(x2 − x3)(ẋ2 − ẋ3)2}.

The remaining zero dynamics ẍ2 = k
m

[
(x1 −2x2 + x3)+ kp[(x3 − x2)3 − (x2 − x1)3]+u2 +d2

]
is stable, if the dis-

turbance d2 is bounded.

Two PI-Observers can be designed for the transformed decoupled dynamics (21) and (22)

ża =
[

0 1
0 0

]
za +

[
0
1

]
v1 +

[
0
1

]
ˆ̄n1 +L1a(y1 − ŷ1), (25)

ˆ̇̄n1 = L2a(y1 − ŷ1), (26)

ŷ1 =
[

1 0
]

za, (27)

and

żb =

⎡⎢⎣ 0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤⎥⎦zb +

⎡⎢⎣ 0
0
0
1

⎤⎥⎦v2 +

⎡⎢⎣ 0
0
0
1

⎤⎥⎦ ˆ̄n2 +L1b(y2 − ŷ2), (28)

ˆ̇̄n2 = L2b(y2 − ŷ2), (29)

ŷ2 =
[

1 0 0 0
]

zb, (30)

with the state vectors za =
[

ŷ1
ˆ̇y1

]
and zb =

⎡⎢⎢⎣
ŷ2
ˆ̇y2
ˆ̈y2

ŷ(3)
2

⎤⎥⎥⎦, to estimate the transformed states and disturbances, namely

x̂1, ˆ̇x1, ˆ̄n1, x̂3, ˆ̇x3, ˆ̈x3, x̂(3)
3 , and ˆ̄n2. To construct the inputs in (23) and (24), besides the displacements x1, x2, and
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x3 the velocities ẋ2 and ẋ3 are also required. As a transformed coordinate, the velocity ẋ3 can be estimated by the
PI-Observer (28)-(30). To estimate the velocity ẋ2, another PI-Observer can be designed by

żc =
[

0 1
0 0

]
zc +

[
0
1

]
v3 +

[
0
1

]
ˆ̄n3 +L1c(x2 − x̂2), (31)

ˆ̇̄n3 = L2c(x2 − x̂2), (32)

(33)

with state vector zc =
[

x̂2
ˆ̇x2

]
, v3 = k

m

[
(x1 −2x2 + x3)+ kp[(x3 − x2)3 − (x2 − x1)3]+u2

]
, and n̄3 = d2

m .

With the estimations from the three PI-Observers mentioned above, the system (16) can be transformed into an
input-output linearized form with nonlinear feedback (23) and (24). To realize the robust control, linear control
method can be applied to the linearized model (21) and (22), for example with linear state feedback control

v1 = −20ˆ̇x1 −100(x1 − x1re f )− ˆ̄n1, (34)

v2 = −200x̂(3)
3 −15000ˆ̈x3 −500000ˆ̇x3 −6250000(x3 − x3re f )− ˆ̄n2. (35)

The desired values taken in the simulation are x1re f = 0.25 and x3re f = 0.3. The dynamics of the disturbances d1,
d2, and d3 are calculated from the estimations ˆ̄n1, ˆ̄n2, and ˆ̄n3.

The simulation results in comparison with classical input-output linearization and Luenberger observer design are
given in Fig. 2.

Figure 2: Comparison of the control results

According to the results, the proposed approach shows firstly robustness against external disturbances, which
can also be understood as modeling errors and parameter uncertainties. In comparison, the classical input-output
linearization method with estimated states from Luenberger observer and the same state feedback control as in
the proposed approach is strongly influenced by the disturbances and leads to large control error, especially in
controlling x3.

Secondly, the proposed approach estimates the velocities based on the measurements of the displacements and
therefore avoids numerical differentiation of the measured signals to get the information of all the states.

At last, the proposed approach not only realizes a robust control for the considered class of nonlinear MIMO
systems, but also generates an estimation of the unknown disturbances/modeling error is a breakthrough in both
application and nonlinear robust control. The estimated disturbance from the example is shown in Fig. 3.
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Figure 3: Estimation of the disturbance d2

7 Conclusions
In this contribution, a robust control design approach is proposed for input-output linearizable nonlinear MIMO
systems with modeling errors and therefore extends the previously developed approach by the authors for SISO
systems. The presented approach solves the robustness problem and the requirements of all the states information
in the classical nonlinear control method (the input-output linearization method) and provides the estimation of the
disturbances/modeling errors at the same time. The application of the approach on mechanical systems is detailed
with an example. The results illustrate clearly the effects and advantages of the proposed robust control method
with the use of PI-Observer technique.
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