I. Troch, F. Breitenecker, eds. ISBN 978-3-901608-35-3

INTEGRATED MODELING, SIMULATION AND OPERATION OF HIGH FLEXIBLE
DISCRETE EVENT CONTROLS

T. Pawletta, S. Pawletta, G. Maletzki
Hochschule Wismar — University of Technology, Business & Design, Wismar, Germany

Corresponding Author: T. Pawletta, Hochschule Wismar, RG Computational Eng. & Automation (CEA)
PF 1210, D-23952 Wismar, Germany; t hor st en. pawl ett a@s-w smar . de

Abstract. An approach for integrated modeling, simulation and operation of complex discrete
event systems is introduced and illustrated by the example of a re-configurable sensor based robot
control. It is discussed how simulation models of complex discrete event systems have to be struc-
tured in the early system design stage in order to extend them to model based control programs for
the operation stage stepwise. One important task in this context is to differentiate between control
and process parts clearly. Moreover, the description of task-based control programs is discussed
and the well-known System Entity Structure and Model Base (SES/MB) framework is adapted for
specification of high flexible controls and stepwise generation of task-based control programs at
runtime. Finally, a prototyping development is presented.

1 Introduction

Modeling and simulation of discrete event dynamic systems is a well established method in engineering science.
Discrete event simulation (DES) is used in the design phase of complex systems to compare different system
structures, layouts and control strategies [19]. During a DES project the system model and control strategies are
implemented in a simulation model using one kind of simulation software. Simulation in that phase can prove
the required system performance including used control strategies before the system is built. With completion of
the design phase the subsequent automation phase starts. It aims to develop and implement the process control
system. Usually, the outcome of a DES project is a document with a description of structure, layout and control
strategies. The conventional procedure then re-implements control strategies into a specific process control soft-
ware system, whose features are often quite limited. The results are increased programming effort, a high prob-
ability of hidden programming errors and communication problems between system engineers and control engi-
neers. In contrast to control engineering of embedded applications [22] there is a gap between design phase and
automation phase up to now. Other research has also clearly identified this gap, for example in container termi-
nal automation [21]. Anderson [2] summarises that this software development process may consume up to 40
percent of total system costs. Re-use of software from the preceding design phase is one approach to reduce the
costs.

Current approaches dealing with the identified gap are driven by the design phase where detailed simulation
models have been developed and implemented to analyse process control strategies. A prerequisite for efficient
control strategy analysis and model re-use for process control is appropriate structuring of the simulation model.
This research proposes the separation of a simulation model into two general sub-models, a system model, also
called process model, and a control model. The system model maps the dynamic of the elements of a real or
planned system and their couplings. It receives input values from the control model and sends state values to the
control model. There are two different approaches [1] to realise a simulation model for process control: (i) ex-
plicit control synthesis by automatic code generation and (i) implicit control synthesis by extension of the simu-
lation model with a process interface. However, today there exist only few commercial code generators for spe-
cific embedded systems. There are no compilers available to translate simulation models to execution code for
Programmable Logic Controllers (PLC) or controllers for industrial robots. This research is based on an implicit
control synthesis.

One of the first approaches to extend a simulation model for process control has been published by Zeigler and
Kim [23]. The approach is based on the DEVS-theory (Discrete Event System Specification) developed in the
1970s to formally describe a discrete event system. In [18] an application is presented using the real-time exten-
sion of DEVS to develop a controller for an embedded system. In [9] DEVS is used in the context of manufac-
turing systems. Other research is based on a more intuitive approach based on the characteristic of simulation
systems. In [15] an approach is proposed using the simulation software Arena to link simulation software with a
physical process. Another approach is initiated in [21] using the simulation software Simple++ to develop and
operate control strategies for a container terminal application. Common in all these projects is that the system
model is replaced by a process interface for communication with the real physical system and the control model
acts as a process controller.

The approach presented in this paper is based on the work in [10, 12, 13], where the system model remains part
of the process control system. Hence, this approach is able to support model based control methods in analogy to

180

Proceedings MATHMOD 09 Vienna - Full Papers CD Volume

the state observer approach in continuous feedback control theory. Basics of this approach and extensions for a
simple task oriented specification of the control model are described in section two. Section three introduces an
extended task oriented control view based on the supervisory control approach and adaptive control methods.
High flexible and re-configurable systems are characterized by a limited range of system autonomy [3, 5] and the
supervisory control has to keep the system within limits [8]. In such applications it may be necessary to adapt
control parameters or the control structure at runtime. We suggest the System Entity Structure (SES) and Model
Base (MB) framework according to [20, 24] as meta-modeling tool for the specification and management of
various control structures and parameters. In this context modified graph analysis and model generation algo-
rithms are developed, which support stepwise graph analysis and comprehensive reconfiguration of the control
model at runtime. Fundamentals of this research are demonstrated by the operation of a high flexible sensor
based industrial robot control. Finally, the development of a prototyping environment is presented briefly.

2 Extending a simulation model from design stage to an event-based control system

2.1 General approach

During the design phase it has to be strictly distinguished between system model and control model. The system
model contains elements (e.g. buffer, server, etc.) representing real process devices. The elements are connected
as the real "material flow". Each element has internal variables to save the current state, such as number of jobs
in a buffer, processing progress, etc. State information is used in the control model and for additional features,
such as visualisation or data recording. The control model generates control signals, used in the system model to
control activities and the material flow between elements. This general structure is presented in figure 1a.

-
| a) design stage ' b) process control stage

I'| simulation software [real-time synchronization

control model visualisation

simulation software

control model visualisation
/

|

|

|

|

|

|

control signals state values |
\ 4 \ 4 |
|

|

|

|

|

|

|
|
|
I
I
I
data recording | |, system model data recording
I
I
I
I
I

control signals state Value}sJ

process interface

A
£ S

actuator signals sensor signals

real process

[
[
[
[
[
| system model
[
[
[
[
[

Figure 1. Extending a simulation model developed in the design phase (a) to a model-based process control system (b)

Two significant extensions on the simulation model and simulation software are necessary to act directly as a
process control system. The changes are highlighted with a grey background in figure 1b. The simulation model
is extended by a process interface. It is used to receive sensor signals from the real process and to send actuator
signals to the real process. In this context some changes in the system model are necessary. System parameters
such as delay times of machines are replaced by real process events, which are received or sent via the process
interface. During the design phase a simulation model is executed as fast as possible. Thus the second extension
synchronises the simulation engine with real-time. That means a real-time clock drives the simulation model. A
prerequisite for a successful synchronisation is that the execution of the simulation model is faster than real-time.
Of course, in real applications a process interface can be implemented modular and hierarchical in different
layers, described in more detail in the next subsection. Moreover it is also possible to test process interfaces in
design phase. A possible approach is the development of process visualization with a real process interface pro-
tocol that is running on a separate PC with appropriate interface cards as described in [12, 13]. The next subsec-
tions will detail the approach.

2.2 Development of system model, control model and process interface

Figure 1 shows that the simulation model consists of a system model and a control model. Both models are dis-
crete event dynamic systems and they can be specified in a hierarchical, modular manner according to the gen-
eral DEVS (Discrete Event System Specification) concept of atomic and coupled systems as described in [24].
According to this theory atomic systems contain a dynamic description, i.e. the definition of state variables, state
transition functions etc. Coupled systems define a structure comprising a set of sub-systems and coupling rela-
tions. Both system types can be connected using input and output ports (variables) and they communicate via
events. Even though DEVS is a powerful formalism, it is not widely accepted in the engineering community.
Hence, we use the concept of statecharts [7] that is more common in engineering today and similar powerful like
DEVS. In addition to the pure discrete event oriented nature of DEVS we use conditions of continuous signals
for state transitions and event generation too. In the following, we discuss the component oriented development
of the system model, the structure of the control model and the implementation of process interfaces in more
detail.

181

I. Troch, F. Breitenecker, eds. ISBN 978-3-901608-35-3

Component oriented development of system model in design phase

As example component a general (m,n) transport node, pictured in figure 2, is used. Such a transport node may
be a robot with m input places and » output places for jobs in a manufacturing system. Figure 3 shows a (m,n)
transport node component with m=2 and n=2 of a system model. The component has one material flow input
port and output port (IN _job, OUT job) and one input and output port (IN control, OUT state) for communica-
tion with the control model according to figure 1. Because, the component at this stage has no process interface
we call this part Transport node High Level. Figure 4 illustrates the Transport node High Level system dynam-
ics specified in a statechart.

O o
O o
© 2
O ®

Figure 2. Structure of a general (m,n) transport node

System Model
—> INjob 1 Transport_node HIGH_LEVEL OUT job1 —>
— > INjob2 IN_job OUT_job K OUT job2 —>
IN__control OUT _ state
= IN control - OUT state —p»

Figure 3. (m,n) transport node high level component with m=2 and n=2 in a system model in design phase

I '/Transport note busy and M
A — T — process starts
— T —_
- S - ——
o = o - entry
enirye S SR " INJeb() [IN_eontroi(1) == 2] direction_out = IN_control(2)
entry: — _out = IN_
QOUT_state =0 fINTERNAL ERROR \| state = IN_job(IN_control(1))
T entry: Stop Simulation OUT_state = state
~_IN_job(2) N .
IR uring:
! \\ / IN_centrol(1) ==1] progrgess = progress +ts
\‘-.,5 \"'-f—t*C& OUT _state = state
T - e ——
— -~
N . p
s
Job departure using port 1 Job departure using port 2 0 [direction_out == 2] [progress == process_time] ‘
entry: entry: = L
OUT_job(1) = state OUT_job(2) = state T - ven " -~
- rocess finishs an
- 0 e
- [- Qﬁ—ﬁ)utput starts J
/
\ [direction_out == 1] //

S

Figure 4. Statechart of (m,n) transport node high level component with m=2 and n=2

An incoming event on job input port /N job changes the transport node from "empty"” to a "busy" state and in-
duces an output signal to the control model (OUT state = IN job). Concurrent with the detection of a job at the
IN job port a control signal is received on IN_control port. This signal contains the input and the requested out-
put direction of an incoming job. Comparison of detected (IN_job) and received (IN_control) input direction is
used for an internal error checking. The state change from "empty” to "busy" starts the process in the transport
node. Optional transport directions require flexible values of the process_time depending on the current job type
and routing. When the process has ended the output of the current job starts using the specified output port. After
the job leaves using OUT Job port the new transport node state is "empty” and an appropriate signal is sent to
the control model (OUT _state = 0).

Our approach is based on modular modeling and a strict separation of system and control parts. That means the
whole system model has to be modelled component oriented, whereas components may be grouped together in
coupled systems. Figure 5 shows a section of simulation model in design phase comprising buffer and server.
The server is modelled using a simple (7, /) transportation node. The lower part of figure 5 represents a section
of system model. Connections between the system model components describe the event oriented material flow
and are used to transfer material information (e.g. job type, manufacturing progress, quality etc.). The blocks
s_buffer, s_server, c_buffer and c_server are necessary to achieve the connections of the system model and con-
trol model. The blocks s_buffer and s_server send the state values to the control model and the blocks ¢_buffer
and c_server receive the control signals.

182

Proceedings MATHMOD 09 Vienna - Full Papers CD Volume

..

No job request

s_server == s_server == 'empty' &...
'used' s buffer > 0

Job request

entry:
c_buffer=1; /
,,,,,,, o
=== material flow signals — - — — — — ~
7 | ~
~ ~
- ‘ ~ .
-~ ~ h
— < p{INjob OUT_job L p IN_job OUT job}bo
IN_control OUT _state IN_control OUT _state
buffer server

Figure 5. Section of a simulation model structure in design phase

Developing the control model

The upper part of figure 5 represents a section of control model. The task of the pictured control component is to
generate a control signal (c¢_buffer=1) to allow a job to leave the buffer. This control signal is generated if there
are jobs in the buffer (s_buffer>0) and the server is in state "empty". In this example the control model section
consists only of two states and two state transitions and it defines no time dependent behaviour. Hence, the final
control program runs in a real-time synchronized simulation environment it is obvious possible to define active
monitoring tasks (e.g. checking if operations are fulfilled in defined time limits) as described in [18].

In real applications the control model may have a very complex structure. Then it is advisable to build it up hier-
archically. Dilts and Pelts et al. [4, 14] discuss different hierarchical process control structures. Our research
experiences led us to favour the proper hierarchical form and the modified hierarchical form to implement the
control model. Figure 6 shows the "proper hierarchical form" which consists of a Leading Control and several
Group Control units. In the "proper hierarchical form" communication is only allowed between the Leading
Control and the Group Control units. The "modified hierarchical form" allows in addition communication
among the Group Control units. Using the “proper hierarchical form” Group Control units receive control sig-
nals from the Leading Control. These control signals define which strategies should be used in parallel branches
(e.g. priority based part routing, machine priority or batch size constraints). Concurrently Leading Control re-
ceives state information from the Group Control unit. Allocation of capacities and control of jobs inside a Group
Control unit is assigned by its own logic. Each Group Control unit and also the Leading Control are directly
responsible for a specified number of components in the system model.

control model

Leading Control
state control
values T l T l values
‘ Group Control 1 ‘ ‘ Group Control 2 ‘ R Group Control n

T T
v

v

Figure 6. "Proper hierarchical form" of a control model

Development of process interfaces and the process control phase

The existing simulation model from the Design Phase should be used for process control by adding a process
interface. The process interface provides in general the ability to evaluate sensor signals and to generate actuator
control signals. Our approach is based on a distributed structure of the process interface. In general, each atomic
or grouped system model component has its own adapted process interface to link the corresponding devices of
the physical process. Of course, the process interface can be structured hierarchically and lower levels may be
shared by different components. The upper level of a process interface to a real process device is attached to its
corresponding system model component. The introduced transport node, as an example of a system model
component, was termed High Level in design phase, the attached process interface is termed the Transport node
Low Level. The key principle in this research is illustrated in figure 7. It describes the coupling of the system
model functionality with a process interface using the implemented (m,1) transport node example with m=2 and
n=2.

183

I. Troch, F. Breitenecker, eds. ISBN 978-3-901608-35-3

system model
Transport_node HIGH_LEVEL
=P IN_job)
=P INjob 1 > N contol OUT_job 9> 1—|0UT job | =P
C_ready_for_process
- B OUT__state =’ -
C_finished_move_out -
= INjob 2 OUT job 2 =P
Transport_node_LOW_LEVEL
C_ready_for_process
'=} IN trol => IN_carrier C_finished :’
contro! inished_move_out -
- l=> IN control — - - OUT state
- OUT_ carrier =’

sensor signals ¥ actuator signals

Figure 7. Coupling of High and Low Level part of a system model component (example: (m,n) transport node)

The delay times in the transport node used during the Design Phase in High Level must be substituted by real
process events. Therefore ports are integrated in High Level to receive real process events from Low Level. Two
communication ports work as follow between the High and Low Level in the transport node element: The real
process in the transport node device will be started from Low Level. If a sensor signals a transport carrier has left
the real process device, then the C ready for process signal indicates this event in High Level. This event uses
the C finished move_out communication signal to update the High Level state.

Low Level modules largely depend on the real process devices. However, the suggested control approach with an
integrated system model opens sophisticated ways for discrete event process control similar to the well known
state observer approach in continuous feedback control. In complex and flexible manufacturing systems it can be
necessary to know job or carrier identifiers. There are two approaches to establish identifiers:

sensors (e.g. bar code),
save and transference carrier identifiers through material and information flow.

Economic, flexibility and reliability problems make the second a better option. In figure 7 Low Level receives the
carrier identifier through input port IN carrier concurrent with an /N job signal in High Level. When an
IN carrier signal arrives, the carrier identifier will be saved in the Low Level state. Actuator control signals are
generated for the specified transport carriers and the real process devices in the Low Level part. When an output
sensor signals a transport carrier has left the real process device, the following actions are triggered:

Low Level generates C_finished move_out signal,
Low Level outputs carrier identifier,

High Level outputs job type,

The states of High and Low Level are updated.

The system control strategies have already been implemented during Design Phase in the control model. These
implementations are used unmodified in the Automation Phase during process interface adding and subsequent
in the Process Control Phase of a real system.

In addition to the process interface the key to control a real process using the implicit control synthesis approach
is the synchronisation of the simulator with real-time. That means a specified time step in the simulator must be
exactly the same time step in the real process. This is the foundation for processing times and delays. Further-
more a cyclic scan of the sensors is necessary to register all process events in time. For this work a fixed sample
time simulation clock is used. The time synchronisation principle is based on sliding of the sample time intervals
with real time intervals. This is integrated in a module that must be added to the simulator. Inherent in this prin-
ciple is that the execution of one time step of the simulator needs to be faster than one sample time interval.

As mentioned in the beginning, a process interface can be implemented hierarchically. Complex physical devices
have specific controllers, which we call execution controller. The execution controller of an industrial robot
implements for example powerful algorithms for path planning and workspace monitoring. In Section 4 a practi-
cal prototyping environment with an industrial robot is presented and it is shown how a specific robot controller
can be integrated as an execution controller.

2.3 Simple task-based controls

In the task-based approach the control program consists of a set of different tasks, where some tasks may be
executed in a defined order or in consideration of different restrictions whereas other can be executed in any
order. According to Kruth et al. [11] a task is not a simple command with a primitive action as result. A task
defines a more complex goal such as the identification of an object where the result may be the object type, the

184

Proceedings MATHMOD 09 Vienna - Full Papers CD Volume

object position etc. A task-based control program necessitates a task transformer that translates a task description
in executable actions of physical devices. In reverse, sensor signals have to be transformed in a task-based data
format.

In the introduced simulation model based control system the task based control program has to be specified as
control model. The task transformer has to be implemented in the process interface, i.e. in the Low Level part of
system components. Often it is useful to integrate execution controllers for specific physical devices. Then, the
Low Levels are responsible for the generation of traditional control commands executed by the device control-
lers. In the following, the specification of a task-based control model will be considered. According to the modu-
lar modeling concept a task-based control model can be composed by different basic tasks (atomic models),
which may be grouped together in coupled models to subtasks and to one complete control task finally. Basic
tasks and subtasks can be executed in sequence or in parallel. Sequential tasks are characterized by unidirectional
couplings, which may be used for event-based activation or data exchange. Moreover, each basic task or subtask
pre-defined in a model base can be parametrized when used in a control model.

Figure 8 shows an example of a simple task-based control model specified using pre-defined task models from a
library. The control model in figure 8 is a detail of the robot application pictured in figure 12. The robot cell
consists of an input buffer with different units and three output buffers. The robot has to sort the units according
to given characteristics (e.g. the colour) in the three output buffer. Therefore, a picture-taking sensor is used to
identify the units in the input buffer. The control model detail consists of parametrizable subtasks, which are
executed sequentially. The subtask /nit is responsible for the initialization of robot cell application. The task
sequence Make Picture, Pick Object and Place Object describes the identification of one unit in the input buffer
and its transport to the appropriate output buffer. The type of unit and the address of appropriate output buffer
are specified by the parametrization of each subtask. Finally, the subtask Stop represents the end of a complete
placement task. A possible parallel task is to monitor collisions with other physical devices in the cell simultane-
ously to the characterised placement task [13].

pre-111.1p1e111e11tec1 ta.slc modules tasl-based
in Statechart library control model
5 5mlnk Librry Browser 31711 S

File Edit Yiew Help

W Stateflow
= §| Task Based Robot Contral m

1
1
1
1
1
1
i
3+ Parallel Tasks Make Picture i
3+ Sequential Tasks | Make Picture !
Pick Object i
s | Pick Object]
state values = control values
. 1
Place Object from Place Object : to
system system
Stop Simulation model Make Picture model

i

ZJFunction Block Parameters: Pick Dbject |
_ k] L
atbeston skl (k) parametrization of
Fleaze define the following parameter(z) task Pick Object
zelect input address: [1 = input_buffer, 2 = output_bufferl, 3 = output_buffer?, 4 = output_bufferd]

Ji
zelect object color : [1 =red, 2 = green, 3 = blue]
E

k. I Cancel | Help | Apply |

Figure 8. Example of a simple task-based control model specified using pre-defined task modules from library

We call the introduced task-based approach and similar concepts as mentioned in [11] simple task-based con-
trols, because the control has to be completely defined on the control model level. Of course, the approach sup-
ports much more degrees of freedom in control as traditional machine oriented process controls. However, it
may be hard to define a complex and adaptive control with changing control parameters and changing control
tasks on this level.

185

I. Troch, F. Breitenecker, eds. ISBN 978-3-901608-35-3

3 Specification and generation of high flexible task-based controls

3.1 Objectives (Supervisory and adaptive task-based control)

In discrete event dynamic systems two types of control are distinguished [8], namely process control and super-
visory control. This section is focused on supervisory control, where control activities only delimit possible
states and the particular next state depends on the next event in the system. On the other hand, it can be neces-
sary to adapt the control structure and its parameters due to the new system state. That means in context with the
task-based control concept introduced in Section 2.3 that a supervisory controller SCONT defines a set of tasks,
SCONT={task,, task,, ..., task; ..., task,}, and a set of permissible parameters P={p;, p,, ..., pi,pm} for each
task;. During operation the controller adapts its active task set and the task parameters depending on the actual
system state. In a flexible control the control goal can be reached using different task sets, i.e. the controller can
use a subset SSCONTc SCONT of tasks to fulfil the defined goal.

As mentioned in the previous section it may be hard or impossible to define such variability exclusive in the
control model layer. It seems advisable for high flexible controls

to use a meta-model to describe admissible task sequences and task parameters and

to adapt the control model depending on the actual system state during operation.

3.2 The System Entity Structure and Model Base framework

Rozenblit and Zeigler [20] introduced the System Entity Structure (SES) and Model Base (MB) framework as a
general system design approach. Since then, it was used for different applications particularly with regard to
simulation-based system design. According to [24], a MB is an organized library of pre-defined atomic or cou-
pled models and the SES is a structural knowledge representation scheme that systematically organizes all possi-
ble structures of a system. Moreover, the framework defines a graph pruning algorithm to extract a unique sys-
tem structure, called Pruned Entity Structure (PES), from an SES and a model generator algorithm that synthe-
sizes an executable simulation model (EM) from PES. The fundamentals of the SES/MB framework are pictured
in figure 9.

System Entity Structure (SES) Model Base (MB)
B {(v = Input)} D1
B-dec {(D.out, F.in1), D2
(E.out, F.in2)} E
D E F F
| {PE=5) {pF=1]2)}

—_——

D-spec {(v=="D1"->D1)| | T

(v=="D2"->D2)} | |

D1 D2 :

{(pD = 10)} {(pD = 20)} |

! Lo Ha
|

Executable Model (EM)

Pruned Entity Structure (PES)

iB {(v="D1")} D1 out
B-dec {(D1.out, F.in1), - (pD = 10) i F
E in2

(E.out, F.in2)}

D1 E F E=5
{(PD = 10)} {(PE=5)} {(pF = 1)} (PE =9 Jout

Figure 9. Fundamentals of SES/MB framework, following [24]

An SES describes all variants to compose a modular, hierarchical system and it specifies the various
parameterizations. In the following, we summarize important ideas of the SES formalism which are necessary to
illustrate the fundamental adaptations for specifying high flexible controls presented in the next subsection.

An SES is a tree, consisting of different kinds of nodes, edges and attached information. The SES formalism
differentiates between two general types of nodes: (i) entity node and (ii) aspect node. An entity node represents
a system object. There are two subtypes of entity node in fact atomic entity and composite entity. An atomic
entity cannot be divided into sub-entities. The model base contains a corresponding model for each atomic en-
tity. Composite entities are defined in terms of other entities, which can be of type atomic or composite entity.
Thus, the root node (figure 9: B) of a tree is always of type composite entity, while all leave nodes (figure 9: E,
F, D1, D2) are of type atomic entity. The root node and each composite entity node of the tree have at least one
successor node of type aspect node. That means, there is an alternate mode between entity and aspect nodes. The
properties of the different node types can be summarized briefly as follows:

1. entity node (figure 9: B, E, F,D, D1, D2): An entity node is defined by a name and is of sub-type atomic
or composite. Both types may have attached variables. A composite entity node has at least one succes-
sor of type aspect node.

186

Proceedings MATHMOD 09 Vienna - Full Papers CD Volume

2. specialization aspect node (figure 9: D-spec): A specialization aspect node is defined by a name and a
set of successor nodes. In the tree it is indicated by a double-line edge. A specialization aspect nodes de-
fine the taxonomy of predecessor entity node (figure 9: D) and specifies how the entity can be catego-
rized into specialized entities (figure 9: D1, D2). The specialization aspect node has always successor
nodes of type atomic entity. These represent the possible specializations. A specialization aspect node
defines selection rules to control the way in which a specialized entity is selected during the pruning
process.

3. decomposition aspect node (figure 9: B-dec): A decomposition aspect node is defined by a name, a set
of successor nodes and coupling information. In the tree it is indicated by a single-line edge. A decom-
position aspect node defines a possible decomposition of its parent entity node. It has any number of
successors of type atomic and/or composite entity. The coupling specification describes how the sub-
entities, represented by the successor nodes, have to be connected. Each coupling information is defined
by a 2-tuple. The 2-tuple consists of sub-entity source and destination information. The composite entity
B in figure 9 has only one-decomposition variant from its viewpoint, consisting of a specialization of en-
tity D and the entities £ and F.

4. multiple-aspect node (not contained in figure 9): The definition of a multiple-aspect node is quite simi-
lar to a decomposition aspect node. However, it defines additionally a NumberRangeProperty and has
only one successor node of type atomic entity. In the tree it is indicated by a triple-line edge. A multiple
aspect node also defines a decomposition of a composite entity, but all sub-entities have to be of the
same entity type. Only the number of sub-entities is variable according to the attached
NumberRangeProperty.

Beside the different node types, the SES formalism supports selection constraints for entity nodes, depicted as
dottet arrow from an entity node or entity parameter to other entity nodes or entity parameters.

An PES extracted from an SES contains only entity nodes and decomposition aspect nodes. All decisions at-
tached to specialization aspect nodes or multiple-aspect nodes and selection constraints are resolved during the
pruning process. Based on the information in the PES the model generator synthesizes an executable simulation
model using the pre-defined models in the MB.

3.3 Employing the System Entity Structure and Model Base framework for high flexible controls

Our employment and adaptation of the SES/MB framework for specification, organisation and operation of high
flexible task-based controls is based on the development in [24]. In the context of task-based controls pre-
defined control tasks, as described in Section 2.3, are deposited in a MB. These tasks appear as atomic entities in
an SES and therefore they are always leaf nodes of the graph. In contrast, the control model is the most upper
composite entity. It represents the root node of a SES. The other composite entities in the graph represent cou-
pled tasks, task specializations or multiple tasks. The specific characteristic of composite entities is defined by
their subsequent aspect node. In the following, we restrict our description on coupled tasks.

Figure 10 illustrates the fundamental ideas of specifying a flexible task-based control with an SES using a small
assembling problem. Similar to the robot control example used in Section 2.3, we assume a robot cell consisting
of an input buffer with different units and an output buffer as assembling area. The content of the input buffer is
time-variant. The robot is equipped with a camera to identify units in the input buffer. One assembling operation
requires following task sequence:

Make Picture: identification of units in the input buffer, selection of one appropriate unit according to the
assembly schedule and its position identification (evaluation of coordinates),

Pick Object: robot movement to the selected unit and grabbing the unit,
Place Object: robot movement to the assembling area, adjustment and assembling of the unit.

Moreover, there are two further tasks: (i) /nit for initialisation of an assembling process and (ii) Stop for its ter-
mination. The five tasks are retrieved as model components in a MB. The SES in figure 10 shows essential pa-
rameters of the basic tasks and specifies the task sequences for the three possible assembling variants:

Bo—-La—Ba-Pil,
Bo—-La—Pil —Ba,
Bo—-Pil —-La—Ba

A flexible control must have the ability to adapt its control behaviour to the process behaviour. That means for
the assembling example, the assembling schedule depends on the available units in the input buffer with the
assembling constraints in mind. Hence, it is not possible to extract a complete PES and to generate a control
model for the whole assembling process in advance. Therefore, a new pruning and model generation algorithm
for stepwise graph analysis and model generation is developed. The first graph analysis of the SES is marked

187

I. Troch, F. Breitenecker, eds. ISBN 978-3-901608-35-3

with bold edges in figure 10. The first temporary control model structure generated from the SES is shown in the
upper picture in figure 11. The graph analysis starts at the root node. Then the graph is traversed using a com-
bined breadth-depth approach, controlled by information specified on the aspect nodes. In our example these are
the coupling information on the aspect-decomposition nodes. If the graph analysis determines a decision node or
decision statement, it stops, derives a partial PES and generates a temporary control model for process control. In
our assembling example the task MakePicture contains such decision statements, which are characterized by
question marks, e.g. (IdObj=?(B0O)). The first temporary control model, pictured in figure 11, consists of the task
sequence: [nit— MakePicture. The task MakePicture has to identify the first assembling unit Bo in the input
buffer. It repeats the identification process till it returns with an appropriate object reference or an "error mes-
sage" after reaching a defined time out. After returning with valid object data, the graph analysis proceeds. Next
determined tasks are PickObject and PlaceObject in the layer of decomposition Level0-dec and MakePicture in
the superior decomposition layer, named Levell-dec. Here the second graph analysis stops because of the deci-
sion statement (1dObj=?(La | Pil)) attached to task MakePicture. The structure of the second temporary control
model is illustrated in the lower picture of figure 11. The tasks PickObject and PlaceObject receive the actual
object data via their input couplings.

The introduced example of a high flexible control illustrates only a subset of the adapted SES/MB framework. A
full syntax and semantics description of the adapted SES formalism for specifying and operating high flexible
controls can be found in [16].

control model

@ control moldel-dec {(Init.out, Level3.in),
| (Level3.out, Stop.in)}
La Pi1 [| I
Init Level3 Stop
Bo

Level3-dec {(Level3.in, Level2.in),
(Level2.out, MakePicture.in),
(MakePicture.out, PickObject.in),
(PickObject.out, PlaceObject.in),
(PlaceObject.out, Level3.out)}

___________ O

Level2 MakePicture PickObject PlaceObject
{(Idi)bj = ?(Pi1)) | (IdObj = ?(Ba)), (out = IdObj)} {(Obj = in), {(Pos = PosVec(in))}
, AA (out = Obj)}

Level2-dec {(Level2.in, Level1.in), !
(Level1.out, MakePicture.in), |
(MakePicture.out, PickObject.in), :
(PickObject.out, PlaceObject.in), :
(PlaceObject.out, Level2.out)} !

Levell MakePicture PickObject PlaceObject
{(IdObj = ?(La)) | (Idibj = ?(Pi1 | Ba)), (out = IdObj)} {(Obj = in), {(Pos = PosVec(in))}
A : ; Vo (out = Obj)}

Level1-dec {(Level1.in, LevelO.in),
(Level0.out, MakePicture.in),
(MakePicture.out, PickObject.in),
(PickObject.out, PlaceObject.in),
(PlaceObiject.out, Level1.out)}

Level0 MakePicture PickObject PlaceObject
{(IdObj = ?(La | Pi1)), (out = 1dObj)} {(Obj = in), {(Pos = PosVec(in))}
e .. ; X (out = Obj)}
Level0-dec {(LevelO0.in, MakePicture.in), fixed trization:
(MakePicture.out, PickObject.in), Ixed parametrization:
(PickObject.out, PlaceObject.in), MakePicture
(PlaceObiject.out, Level0.out)} {(Target = InputBufferAddress),
(Camera = RadioCam)}
I PickObject
MakePicture PickObject PlaceObject {(Target = InputBufferAddress)}
{(IdObj = ?(Bo)), {(Obj = in), {(Pos = PosVec(in))} PlaceObject
(out = 1dObj)} (out = Obj)} {(Target = OutputBufferAddress)}

Figure 10. Specifying task-based control variants for a small flexible assembling problem using SES and displaying of the
first partial graph analysis (bold edges)

188

Proceedings MATHMOD 09 Vienna - Full Papers CD Volume

control model

Level3

Level2

Levell

31_)31) Level0

ol i
jL MakePicture

= (1dObj = 2(Bo))

control model

Level3

Level2

Levell

Level0

MakePicture |out=Bo L PickObject |out=Bo L PlaceObject MakePicture
(IdObj = (Bo)) (Pos = PosVec(Bo)) - (IdObj = ?(La|Pi1))

Figure 11. 1* and 2™ control model structure generated from the SES in figure 10

4 Prototyping environment

Test and validation of this research is carried out through a prototype development based on a KR3 robot from
KUKA. For robot programming, KUKA offers a special imperative programming language, called KUKA Robot
Language (KRL). The KRL is similar to the programming language C, however with less functionality. Concur-
rent programming features, effective code debugging tools or visualization routines are not available. Moreover,
the integration of additional hardware is limited to KUKA products.

In the prototyping environment the robot hardware was extended by adding a PC including the software envi-
ronment Matlab/Stateflow and further Matlab toolboxes as shown in figure 12. Moreover, a non-KUKA radio
camera and an electro-mechanic gripper are mounted on Tool Center Point (TCP) of robot. The structure of
multi-level robot process interface for the application presented figure 12 is shown in figure 13. Goal of applica-
tion is to identify coloured cubes in an input buffer and to sort them by colour in different output buffers.

MatlabiStatefiow PC Robot KR 3 | TRl B

Fle Eh Wew et Took Deddon W ol

Serial
Connection

KUKA Controller KR C 3 with
Interpreter-Program in KRL

= CD-ROM-Drive
E i [t ||| Floppy
. o IUPS
g .

L = ——-’/1
OM/ OFF Resst

E. 28886828338

Figure 12. The prototyping environment and visualization of a simple robotic application

The complete control program is running on the PC and it has to be implemented in conformity with the intro-
duced simulation model based control approach using Matlab tools like Stateflow, Simulink and SimEvents. In
this application High Level and Low Level part of robot system component save state information of physical
robot and the additional radio camera. The system model component of robot sends state values to the control
model part of simulation model based control system and receives control values from there. Moreover, the Low
Level part receives information about the physical process devices in Matlab variables and sends instructions to
the physical robot and radio camera via blocking or no blocking Matlab function calls. The translation from
Matlab code to binary code for the KUKA controller and the radio camera and reverse is implemented in two
additional Matlab toolboxes, running on the PC, too. Aside from that, the toolboxes provide much more func-
tionality. For example, the complete image processing is done using functions of the Matlab Image Processing
toolbox. A further element of process interface is the conventional KUKA controller. It is connected with the PC

189

I. Troch, F. Breitenecker, eds. ISBN 978-3-901608-35-3

(serial interface, USB or Ethernet) and works as execution controller of robot. The inferpreter on the KUKA
controller is implemented in KRL and realizes a bi-directional communication with the PC. The interpreter is
responsible for the identification and execution of all robot oriented instructions that are transmitted by the PC.
Hence, the original KUKA controller operates as execution controller for the robot. Its powerful functions, like
(i) perpetuation of security given by KRL through workspace supervision, (i) checking final position switches of
every robot axis etc., are preserved.

system model

from previous robot HIGH_LEVEL to next
system model system model
component /) => IN__job component
; OUT__job i
= INjob 1 ;=P IN_control _Jjo OUT job 1 =P
/
i i OUT _ state
from)/ input_finished !)
control model K — | output_finished start_signal OUT job 2 =
IN control | {
| ~ Y|OUT job3 =P

\ robot_ LOW_LEVEL |
to
\

\ . . \ control model
start_signal input_finished ~~ | OUT state :>

L
\ ' IN_control output_finished

Matlab Matlab Matlab
variables ¥ fen. calls @ variables

Matlabcamera interface +
Matlab image proc. tbx.

running on the PC Matlab KRL toolbox

binary KRL-based A i binary KRL-based

2
X i i binary camera signals
robot & sensor signals

i it robot instructions

KUKA robot controller with KRL interpreter

h
[—

physical robot with additional non-KUKA sensors iﬂ--
(e.g. radio camera))

Figure 13. Example of a multi-level process interface for a robot application with image processing

The adapted SES/MB framework is also running on the PC and is strongly coupled with the simulation model
based process control system. It supports:

the organization of pre-implemented task-based control components in a statechart library,
an SES based specification of high flexible control strategies using XML and
a re-configuration of the control model at runtime.

The graph analyzer (pruning algorithm), the model generator and the bi-directional communication between the
simulation model based control system and the SES/MB framework is implemented with Matlab functions,
which are bundled up to a Matlab SES toolbox [6, 16]. First practical experiments with the prototyping environ-
ment showed that the SES/MB framework and the simulation model based process control system can be per-
formed on an ordinary PC under real time conditions.

To facilitate the development and test of simulation model based controls according to the rapid control proto-
typing approach [1], a visualisation toolbox was created. Thus, it is possible to visualize a robot application in-
cluding all movement actions. Figure 12 exemplifies a visualization of a simple robotic application. The robot
control commands available in the visualization environment have the same semantics as the ordinary KRL
instructions transmitted to the physical robot. Thereby, control programs can be developed and tested independ-

ently from hardware for different process scenarios. A more detailed description of prototyping environment is
published in [13].

5 Conclusions

The introduced approach shows, that it is possible to stepwise extend discrete event-oriented simulation models
from the Design Phases to a model-based Process Control System. An important aspect of the work has been
identifying the need for an appropriate modular structure to separate process dynamics, control logic and process
interfaces. The result is a simulation model with two fundamental components, called system model and control

190

Proceedings MATHMOD 09 Vienna - Full Papers CD Volume

model. Particularly the system model has to map the physical process devices in appropriate model components
strictly. This allows the simple addition of a process interface to the system model components to interact with
real physical process devices or with specific process controllers, which operate as execution controllers. In the
Process Control Phase it is fundamental, that the simulator is synchronised with real time. Control strategies are
already implemented and tested during the Design Phase can be used without modifications in the Automation
and Process Control Phase. The system model always saves the actual process states. Thus, it allows model-
based calculations to save physical sensors and to improve the process control. It has been shown that the ap-
proach also supports a real task-based control specification. Moreover, the integration with an adapted general
system design framework has been presented. This integration provides comprehensive possibilities to design
and to implement high flexible controls. Development of experimental applications has shown that the continu-
ous implementation of the approach with a uniform methodology within a homogeneous software environment is
advantageously. Thus, the software development effort could be significantly reduced, not least because of mul-
tiple re-use of software components from the early system design phase in its real operation phase.

The research is being extended into the area of optimal control systems using a superior optimization layer that
interacts with the process control system [10]. Other ongoing works are the adaptation of new enhancements of
the System Entity Structure formalism [25] and the integration of learning ability along with recurring analyses
of System Entity Structures [17].

6 References

[1] Abel, D., Bollig, A.: Rapid Control Prototyping — Methoden und Anwendungen. Springer-Verlag, 2006 (in
German).

[2] Anderson, C.: Tomorrow'’s ideas at work today - scalable flexible manufacturing. Advanced Manufacturing
Magazine, Research Report 2000, www.advancedmanufacturing.com/March00/research.htm.

[3] Bajcsy, R.: Position Statement Robotic Science. In: Robotics Research - 12th International Symposium
ISSR, Springer Tracts in Advanced Robotics, (Ed.: R. Bajcsy), Springer-Verlag, 2007, 583 — 587.

[4] Dilts, D.M., Boyd, N.P., Whorms, H.H.: The evolution of control architectures for automated manufactur-
ing systems. Journal of Manufacturing Systems, Vol. 10, 1991/1, 73-93.

[5] Gausemeier, J., Frank, U., Steffen, D.: Intelligent Systems, Self-optimizing Concepts and Structures. In: Re-
configurable Manufacturing Systems and Transformable Factories, (Ed.: A.I. Dashchenko) Springer-
Verlag, 2006, 719 — 742.

[6] Hagendorf, O., Pawletta, T.: 4 Framework for Simulation Based Structure and Parameter Optimization of
Discrete Event Systems. In: "Book project about advances in DEVS" (ed. Wainer, G.), CRC Press, 2009
(submitted 2008/09/14, 25 pages).

[7] Harel, D.: Statecharts: A visual formalism for complex systems. Science of Computer Programming, North
Holland, Vol. 8, 1987, 231-274.

[8] Hruz, B., Zhou, M.C.: Modeling and Control of Discrete-event Dynamic Systems. Springer-Verlag, 2007.

[9] Hu, X.: A simulation-based software development methodology for distributed real-time systems. PhD-
Thesis, University of Arizona, 2004.

[10] Kremp, M., Pawletta, T., Colquhoun, G.: Simulation-Model-Based Process Control of Discontinuous Pro-
duction Processes. In: Advances in Manufacturing Technology - XX, 4th Int. Conf. on Manufacturing Re-
search (ICMRO06), Liverpool, UK, 2006, 49-54.

[11] Kruth, J.-P., Van Ginderachten, T., Prianggada, I.T., Valckenaers, P.: The use of finite state machines for
task-based machine tool control. Computers in Industry. Vol. 46, 2001, 247-258.

[12] Maletzki, G., Pawletta, T., Pawletta, S., Lampe, B.: A model-based robot programming approach in the
MATLAB/Simulink environment. In: Advances in Manufacturing Technology - XX, 4th Int. Conf. on Manu-
facturing Research (ICMRO06), Liverpool, UK, 2006, 377-382.

[13] Maletzki, G., Pawletta, T., Pawletta, S., Diinow, P., Lampe, B.: Simulationsmodellbasiertes Rapid Proto-
typing von komplexen Robotersteuerungen (Simulation Model Based Rapid Prototyping of Complex Robot
Controls). atp — Automatisierungstechnische Praxis, Oldenb. Verlag,Vol. 50, 2008/8, 54-59 (in German).

[14] Pels, H.J., Wortmann, J.C., Zwegers, A.J.R.: Flexibility in manufacturing: An architectural point of view.
Computers in Industry, Vol. 33, 1997, 271-283.

[15] Peters, B.A., Smith, J.S.: Real-time simulation-based shop floor control. In Proc. of ArenaSphere '98, Pitts-
burgh/PA, USA, 1998, 188-194.

[16] Pingel, T., Pawletta, T.: SES toolbox V0.1 for Matlab/Simulink . Internal Report, Wismar University of
Technology, Business & Design, RG Computational Engineering & Automation, 2008/10.

[17] Pingel, T., Pawletta, T., Pang, P. S., Kasabov, N.: Design of a Rapid Prototyping Environment for Intelli-
gent Robot Controls. In: 4™ Int. Conf. on Autonomous Robots and Agents (ICARA 2009), Wellington,
New Zealand, Feb. 10-12, 2009 (submitted for publication).

191

I. Troch, F. Breitenecker, eds. ISBN 978-3-901608-35-3

[18] Praehofer, H., Jahn, G., Jacak, W., Haider, G.: Supervising manufacturing system operation by DEVS-
based intelligent control. IEEE Computer Society Press, 1994, 221-228.

[19] Robinson, S.: Discrete-event simulation: from the pioneers to the present, what next?. Journal of the Opera-
tion Research Society, 56 (2005)6, 619-629.

[20] Rozenblit, J.W., Zeigler, B.P.: Concepts for knowledge-based system design environments. In: Proceedings
of the 17th conference on Winter simulation, San Francisco, US, 1985, 223-231.

[21] Saanen, Y.A., Verbraeck, A., Rijsenbrij, J.C.: The application of advanced simulations for the engineering
of logistic control systems. In: Proc. 9th ASIM Dedicated Conference on Simulation in Production and Lo-
gistics, eds. K. Mertins, M. Rabe, Berlin, 2000, 217-231.

[22] The MathWorks: Control Design Products — Model-Based Design for Embedded Applications. The Math-
Works Report, 2000, 1-16.

[23] Zeigler, B., Kim, J.: Extending the DEVS-scheme knowledge-based simulation environment for real-time
event-based control. IEEE Transactions on Robotics and Automation, 3 (1993), 351-356.

[24] Zeigler, B.P., Prachofer, H., Kim, T.G.: Theory of Modeling and Simulation. 2™ Ed., Academic Press,
2000.

[25] Zeigler, B.P., Hammond, P.E.: Modeling and Simulation-Based Data Engineering. Academic Press, 2007.

192

