
MODELLING, SIMULATION AND CONTROL OF A REDUNDANT PARALLEL
ROBOT USING INVARIANT MANIFOLDS

M. Manderla1, U. Konigorski1
1Technische Universität Darmstadt, Germany

Corresponding author: M. Manderla
Department of Control Engineering and Mechatronics

TU Darmstadt – 64283 Darmstadt, Landgraf-Georg-Str. 4 – Germany
Email: mmanderla@iat.tu-darmstadt.de

Abstract. The aim of this contribution is a systematic approach of modelling, simulation and control
of a parallel robotic manipulator. Regarding the framework of structured analysis of dynamical sys-
tems, the mathematical description yields a set of differential equations and some additional holonomic
constraints which appear as algebraic relations between single state variables. By defining a number
of ficticious additional input and output variables this descriptor representation can be interpreted as
coupling or constraint control problem. Numerical stable simulation and exterior control for trajectory
tracking can now be achieved by designing an apropriate state feedback that keeps the closed loop
system on an invariant manifold of consistent/allowed states.

1 Introduction
In recent years the interest in parallel robotic manipulators grew steadily. This is due to several advantages based
on the specific architecture of this kind of mechanical system. First of all since the electric drives are mounted
on a fixed platform they do not have to be moved with the links of the robot which certainly lowers inertia. As
a further consequence also the links and therefore the whole structure may be chosen significantly lighter. This
clearly enables larger accelerations and shorter cycle times, which is of great importance for industrial applications.
Another advantage is the fact that due to the multiple kinematic loops such parallel robots may be prestressed by
the help of antagonistic torques which can be chosen independently of the aspired trajectories. Therefore backlash
may be reduced to a minimum in order to increase precision.

In the past the process of mathematical modelling has been subject to a bunch of examinations which can be found
in [1] and [4] for instance. Compared to classical industrial robots having a tree structure there are major problems
occuring typically during the process of modelling such parallel robotic devices. In contrast to classical indus-
trial robots that are well understood and consist of only one open serial kinematic chain these parallel robots with
several closed chains are considerably harder to describe. Depending on the nature of the holonomic constraints,
which are typically appearing in this context, in many cases even the number of the mechanical degrees of freedom
and therefore a suitable set of generalized coordinates is difficult to find or unknown. Often the closed chains are
cut open at some joints such that the system is getting a tree structure. In the following auxiliary dependent coor-
dinates are introduced to simplify the process of modelling and to describe the single branches. At this point two
different approaches can be followed as far as the literature is concerned. Using the given holonomic constraints of
the cut joints these dependent coordinates may be eliminated to obtain the equations of motion involving a minimal
set of coordinates. Difficulties arise from the fact that this elimination requires the analysis of the possibly ambigu-
ous inverse kinematics which often even leads to non unique expressions since the coordinates contribute to the
kinematic equations in a nonlinear fashion. In addition the resulting equations of motions are unhandy such that
the numerical integration is quite involved. In the second approach that can be found frequently the time derivative
of the holonomic constraints is used rather than the constrained equations themselves. Since this time derivative is
linear with respect to the generalized velocities the latter which are not independent can be eliminated easily from
the equations of motion. This reduces the number of equations of motion to a minimum. Unfortunately the whole
set of kinematic equations has to be kept in the model for numerical integration. Therefore the number of ordinary
differential equations which have to be integrated is not minimal. Because of the fact that the holonomic con-
straints are interpreted as nonholonomic even though they are integrable the dynamical system is embedded into
a higher dimensional state space. The resulting differential equations are often computationally less demanding.
Otherwise it has to be ensured that the initial condition for the numerical analysis belongs to the space of allowed
configurations which may be a non trivial task for some involved kinematic relations. Furthermore any error due
to numerical precision will result in states that are not physically motivated and without any additional effort there
is no mechanism to bring the system back onto the manifold of admissible states.

The aim of this contribution is a systematic approach of modelling, simulation and control of parallel robotic
manipulators that gets along without the described elimination of auxiliary coordinates or the definition of some
integrable nonholonomic constraints. The planar redundant robot shown in figure 1 serves as an example. Besides
the system simulation the goal will be to let the tool center point (TCP) follow desired trajectories. The TCP is
connected to the ground by three symmetric two-link arms consisting of one passive and one active link each. The
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Figure 1: Planar redundant parallel robot

three drives at the active joints are represented by three independent torques τ1, τ2, τ3.

2 Mathematical modelling
Regarding the framework of structured analysis of dynamical systems, it is often useful and convenient to divide
the overall system into smaller parts. This way of modelling is quite intuitive and less complex, even though the
aggregation of those subsystems requires some additional compatibility conditions. Considering the standard state
space approach, these conditions appear as algebraic equations defining relations between single state variables.
Such differential-algebraic systems are also known as descriptor systems.

As in classical approaches first of all the robotic system will be cut into three subsystems, as shown in the free-body
diagram depicted in figure 2. In contrast to the well known procedures a state space representation in descriptor
form will be derived including the required holonomic constraints directly. Subsequently the formulation of a ap-
propriate control problem will be addressed to the obtained differential-algebraic system, that enables the controller
design and system simulation with known nonlinear design methods and standard integration algorithms.

2.1 Lagrange’s formalism

The derivation of the equations of motion of the three robotic arms as subsystems is a standard problem in multi-
body dynamics. Either Kane’s method or energy-based methods as the well-known Hamilton or Lagrange equa-
tions may be used (see [3], [6] and [9]). In this paper because of the simple kinematic relations of the subsystems
the latter approach will be followed.

For the i-th arm with i = 1,2,3 the centres of mass of the two rigid bodies and the TCP are given by the kinematic
equations

�ri1 = (ri0x +
li1
2

cosqi1)�ex +(ri0y +
li1
2

sinqi1)�ey

�ri2 = (ri0x + li1 cosqi1 +
li2
2

cosqi2)�ex +(ri0y + li1 sinqi1 +
li2
2

sinqi2)�ey

�rie = (ri0x + li1 cosqi1 + li2 cosqi2)�ex +(ri0y + li1 sinqi1 + li2 sinqi2)�ey,

(1)

respectively, whereas (ri0x,ri0y) denote the coordinates of the i-th electric drive. By assumption the cross-sections
of all rigid bodies are constant and the TCP mass me represents a particle. Note that the time dependencies of
the coordinate functions are omitted for convenience without causing any confusion. Now the velocities can be
calculated using the time derivatives of (1) with respect to the Newtonian reference frame. This yields

�vi1 =
d
dt

�ri1, �vi2 =
d
dt

�ri2 and �vie =
d
dt

�rie. (2)
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Figure 2: Free-body diagram of the planar redundant parallel robot

The derivation of the angular velocities is fairly simple and can be expressed in terms of the generalized coordinates
q as1

�ωi1 = q̇i1�ez and �ωi2 = q̇i2�ez. (3)

Defining the external forces �Fi := Fix�ex +Fiy�ey and the external torque vectors�τi := τi�ez the corresponding transla-
tional and angular velocities are directly given by�vie and �ωi1 respectively. Lagrange’s method can now be applied.
The kinetic energy for any arm is given by

Ti =
2

∑
j=1

(
1
2

mi j�vT
i j�vi j +

1
2

Θi j�ωT
i j�ωi j

)
+

1
2

mie�vT
ie�vie (4)

with the TCP mass being evenly distributed among the three arms which yields mie := me
3 . Since the potential

energy vanishes, Ui = 0 and the Langrangian function becomes

Li = Ti. (5)

The equations of motion for any of the subsystems can now be computed by the famous Lagrange’s equations

d
dt

(
∂Li
∂ q̇i j

)
−

∂Li
∂qi j

= Qi j, j = 1,2 (6)

under consideration of the external forces

Qi j =
∂�ωi1
∂ q̇i j

·�τi +
∂�vie
∂ q̇i j

·�Fi. (7)

Defining qi :=
[
qi1 qi2

]T and omitting the arrows indicating vectorial quantities the equations of motion are of
the form

Mi(qi)q̈i +Ci(q̇i,qi) = GiF(qi)Fi +Giτ(qi)τi. (8)

So far the derivation of the dynamics of the subsystems has been straight-forward. Exploiting Newton’s third
law ∑3

i=1 Fi = 0 which means that the joint forces are not independent. Therefore F3x and F3y can be expressed
1 ˙(.) = d

dt (.)
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in terms of F1x,F1y,F2x and F2y alone. Defining τ :=
[
τ1 τ2 τ3

]T
,F :=

[
F1x F1y F2x F2y

]T and q :=[
q11 q12 q21 q22 q31 q32

]T , the equations of motions can be compressed to

M(q)q̈+C(q̇,q) = GF(q)F +Gτ(q)τ. (9)

with positive definit matrix M(q). Note that this representation of the dynamics of the subsystems is affine with
respect to the external forces and torques. In order to describe the dynamics of the overall system the holonomic
constraints for the central joint have to be added. From�r1e =�r2e =�r3e the four independent algebraic equations

0 =�r1e(q)−�r3e(q)

0 =�r2e(q)−�r3e(q)
(10)

are chosen. Finally the mechanical model of the parallel robot is represented by (9) and (10).

2.2 State space representation

Using the definiteness of M(q) and again omitting the arrows a differential-algebraic state space model

[
q̇
q̈

]
=

[
q̇

−M(q)−1 C(q̇,q)

]
+

[
0

M(q)−1 GF(q)

]
F +

[
0

M(q)−1 Gτ(q)

]
τ (11)

0 =

[
r1e(q)− r3e(q)
r2e(q)− r3e(q)

]
(12)

can easily be obtained. Denoting xT
1 =

[
qT q̇T ]

, x2 = F , u = τ and the observation that the algebraic equations
(12) depend on q only yields the differential-algebraic normal form

ẋ1 = a11(x1)+A12(x1)x2 +B1(x1)u (13)
0 = a21(x1). (14)

2.3 Formulation of the control problem

Obviously the numerical simulation of the descriptor system (13), (14) is a nontrivial task. The key idea of this
contribution is the combination of rewriting this set of differential-algebraic equations into a nonlinear coupling
or constraint control problem respectively motivated by the approach in [5] for linear systems and designing an
appropriate nonlinear feedback law which recovers the original dynamics of the robotic system. For being able to
handle the algebraic part of the mathematical model, some new constraint or coupling output quantities

yc := a21(x1) (15)

are defined. One of the tasks as far as controller design is concerned will be to bring those fictitious outputs to zero
asymptotically. To accomplish this another new input vector

ue :=
[

x2
u

]
(16)

is defined. Since (13) is affine with respect to x2 and u the new overall open loop system

ẋ1 = a11(x1)+A12(x1)x2 +B1(x1)u

= a11(x1)+
[
A12(x1) B1(x1)

][
x2
u

]
=: a(x1)+B(x1)ue (17)

yc = a21(x1)

=: c(x1) (18)

is again input affine. Hence the effort concerning the computation of the class of feedback law still remains quite
moderate.
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3 Feedback control design
For feedback control purposes the system description will be embedded into an differential geometric context.
Equations (17), (18) are considered as a local representation of the system dynamics on a smooth manifold M ,
which means that x1 can be identified via diffeomorphic coordinate functions ϕ with a point ϕ−1(x1) = p ∈M

which belongs to M . Furthermore suppose dimM = r, x2 ∈ R
pc , u ∈ R

p and that the number of algebraic
equations qc equals pc. The vectorfields a(x1) and c(x1) and also the matrix-valued mapping B(x1) will considered
to be smooth and therefore continuously differentiable.

3.1 Feedback structure and control objective

Before appropriate control objectives can be defined, a suitable feedback structure will be chosen. Regarding
the famous Lagrange’s equations (6) or also Newton’s second law of motion, it is obvious that external forces and
torques always contribute to these kind of mechanical manipulators in an affine fashion. Consequently any minimal
representation would be input affine since only such torques serve as actuating variables. We will therefore choose

ue =

[
x2
u

]
= r(x1)+ f (x1) ũ (19)

as feedback form because any control of this kind transforms an input affine open loop system again into an input
affine closed loop system as can be checked easily.

Now, the design issue is to find an appropriate state feedback controller (19) which has to meet certain requirements
as far as the closed loop dynamics are concerned. Equation (14) causes the trajectory of x1(t) to remain on an
invariant submanifold N ⊂M of allowed configurations for all times t. This means that if this submanifold is
reached once the solution x1(t) will always remain on N , no matter what driving torques are chosen. Regarding
the descriptor model (13), (14) inconsistent initial conditions will be pulled to N immediately. Clearly the control
(19) law applied to the coupling control problem (17), (18) will not recover this impulsive behavior since the
algebraic part does not appear in the closed loop. On the other hand such inconsistent initial conditions do not
exist in reality and they are therefore rather part of the mathematical model than part of the physics behind. The
physics of the system are thus given by equation (13) on N only.

Consequently the first control objective is to find a feedback law that renders the manifold of admissible states
invariant which can be expressed as

a(x1)+B(x1)r(x1)⊂ Tx1N

c(x1) = 0

}
∀x1 ∈N , (20)

whereas Tx1N denotes the tangent space of N . Clearly, for all admissible states and therefore for any x1 belonging
to N the fictitious outputs have to vanish to guarantee that the algebraic equations are not violated.

Even if the physical system lives on N only, for numerical purposes this submanifold is required to be globally
attracting. Consequently any solution will be pulled to N whenever inconsistent initial conditions or numerical
errors occur. Because of the physical reasons the way how this is achieved is of secondary importance.

The remaining degrees of freedom in the controller design procedure can now be used to make the system behave in
a desired way on the invariant submanifold of allowed states. This can either be used in order to design a controller
in the classical sense to solve some trajectory following problems or to simulate the robotic system without any
exterior control. For the latter case the original dynamics on N have to be obtained which defines the last control
objective.

In order not to excite any prohibited motion the choice of input variables has to be obviously such that

B(x1) f (x1)⊂ Tx1N ∀x1 ∈N . (21)

Summarizing the static feedback control (19) has to meet two requirements:

• The manifold N of admissible states has to be invariant and asymptotically attracting.
• For system simulation the dynamics on N have to be the original dynamics of the system in minimal

representation.

3.2 Constraint dynamics algorithm

As far as the computation of a maximal controlled invariant and output-nulling submanifold and the corresponding
feedback law is concerned the basic idea can be found in [7] for linear systems and is extended to nonlinear
input affine systems in [2] and [8] resulting in the constraint dynamics algorithm. This approach can directly be
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addressed to the posed control problem such that the required invariance property of the manifold of consistent
states is achieved for the closed loop dynamics. It is not quite clear which dimension this manifold is going to
have since the number of degrees of freedom of a system including closed kinematic chains is not determined by
the number and the nature of the joints alone. The assembly of the single joints is actually of great importance.
Note, that the proposed algorithm, that will be used here provides precisely the maximal controlled invariant and
output-nulling submanifold. Therefore any allowed motion of the parallel robotic manipulator will be kept in the
derived simulation model.

Before sketching the constraint dynamics algorithm as described in [8], some mathematical framework is intro-
duced. Let F : M1 →M2 be a map between manifolds with dimensions dim(Mi) = ni and let p2 ∈M2. Suppose
that F−1(p2) is nonempty and rank(F) at every point of F−1(p2) equals n2. Then F−1(p2) is a submanifold of M1
of dimension n1−n2. The rank of F at point p is given by the rank of the jacobian calculated at ϕ(p) whereas ϕ is
a set of coordinate functions for M1. Additionally L f h denotes the Lie-derivative and is given in local coordinates
by L f h = ∂h(x)

∂x f (x).

The constraint dynamics algorithm is now based on an successive nesting of submanifolds starting from M .
Consider the system (17), (18).

Step k = 0: By assumption the output vector field c(x1) contains qc independent scalar functions ci(x1), which
means that the rank of c(x1) is maximal. Introducing restrictions

φi(x1) := ci(x1), 1≤ i≤ qc = n0,

the first nested submanifold can be expressed as

N
0 := {x1 ∈M |φi(x1) = 0, 1≤ i≤ n0 } .

...

Step k : At the k-th step, the change of the restrictions φi along the controlled vectorfield a(x1)+B(x1)r(x1)
is analyzed. Defining matrices Mk

B = (mk
B)i j and Mk

a = (mk
a)i

(mk
a)i(x1) := La(x1)φi(x1), 1≤ i≤

k−1

∑
l=0

nl

(mk
B)i j(x1) := Lb j(x1)φi(x1), 1≤ i≤

k−1

∑
l=0

nl , 1≤ j ≤ pc + p,

whereas b j(x1) denotes the j-th column of B(x1). Assuming that Mk
B has constant rank rk in

a neighborhood of N k−1, after a permutation of the constraints φi, it is certainly possible (by
implicit function theorem) to find a feedback, such that

Mk
a (x1)+Mk

B r(x1) =

[
0rk×1

ψk(x1)

]
!
= 0 on N

k−1.

Let rank(ψk) = nk again be constant on N k−1 by assumption. Therefore nk independent elements
of ψk can be chosen as further restrictions

φi(x1), nk−1 < i≤ nk−1 +nk.

The new nested submanifold is definded as

N
k :=

{
x1 ∈M

∣∣∣∣∣φi(x1) = 0, 1≤ i≤
k

∑
l=0

nl

}
.

...

Step k� : Finally the algorithm determines when

Mk�

a (x1)+Mk�

B (x1) r(x1) = 0 on N
� =: N ⇔ ψk� = 0. (22)

A point x10 is called regular point of the algorithm, if both rank assumptions are satisfied.

The requirement with respect to the feedforward gain (21) can easily be translated into a constructive version and
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yields
Mk�

B (x1) f (x1) = 0, (23)
whereas the number of independent control inputs just equals the dimension of the kernel of Mk�

B (x1).

3.3 Making the manifold of admissible states attractive

Introducing some modifications it is furthermore possible to make the invariant manifold N an attracting sub-
manifold, such that all inconsistent initial conditions tend asymptotically towards N . This is especially important
for simulation purposes. Technically the modification of the constraint dynamics algorithm is done by slightly
changing the feedback law r(x1) or using the remaining degrees of freedom respectively without losing the invari-
ance property of N . Regarding equation (22) which plays a key role in the controller design the right hand side
vanishes on N only. Thus any combination of the restrictions φi may be added to the first rk�(x1) equations since
the invariant submanifold is just defined by those restrictions which have to vanish on the latter. This yields

Mk�

a (x1)+Mk�

B (x1) r(x1) =

[
∑n

i=1 pi(x1)φi(x1)
0

]
on M with n :=

k�−1

∑
l=0

nl . (24)

Because of the properties of Mk�

B (x1) solvability is still guaranteed. Note, that the coefficients pi, that are to
be chosen, stand for rk�-dimensional vectors. Furthermore the calculation of the restrictions φi(x1) during the
algorithm will not change which certainly results in the same N .

Making the obtained maximal invariant manifold attracting by the proposed structure might be a nontrivial task
or even impossible in general. Nevertheless concerning plenty of relevant applications, the actual calculation
reveals major simplifications. If the first appearance of any of the fictitious output quantities ci(x1) or their time
derivatives in Mk

B(x1) leads to a new independent row, no further restrictions φi(x1) will be generated. In this case
the restrictions directly denote the output variables ci(x1) and their time derivatives and thus a pole-placement
procedure can be carried out, leading to exponential stability of the fictitious output variables which hence tend to
zero.

Choosing an appropriate set of local coordinates, for the closed loop system

ẋ1 = a(x1)+B(x1)r(x1)+B(x1) f (x1)ũ (25)
yc = c(x1)

the coupling feedback law yields the triangular structure
˙̃x1 = ã1(x̃1, x̃2)+ B̃1(x̃1, x̃2)ũ
˙̃x2 = ã2(x̃2)

yc = c̃(x̃2).

Obviously all the states x̃1 have been rendered unobservable with respect to the fictitious coupling output variables
yc. In contrast x̃2 is uncontrollable and therefore the subsystem ˙̃x2 = ã2(x̃2) has to be stabilized by the proposed
feedback.

Considering the presented example of the parallel robotic manipulator the second time derivative, which means
the acceleration, can be influenced directly by the extended input vector ue for any of the holonomic constraint
equations. Exemplarily if φi0 = ci then d

dt ci is denoted by φi1. Since d
dt φi1 can be controlled directly in an inde-

pendent manner, applying the proposed feedback law d2

dt2 ci can be expressed in terms of ci and d
dt ci. Thus for the

decaying of the error defined by ci two poles may be assigned and hence exponential stability can be guaranteed.
From the physical point of view this is quite intuitive, since certainly there exist joint forces keeping the specific
joints together.

The proposed procedure is similar to the well-known case of output-linearization, but it should be emphasized that
in the case of the design of coupling feedback laws the system in general does neither have to be output-linearizable
nor has to have stable zero dynamics. The requirements are therefore significantly less demanding.

3.4 Recovery of the open loop dynamics on N

In [8] the inequality rk� ≤ pc is proven, that is there are at most pc independent rows contained in Mk�

B . Since the
fictitious input vector ue is of dimension p+ pc the feedback r(x1) and therefore some degrees of freedom remain
to be assigned. The goal will be to leave the open loop dynamics of the nonlinear descriptor system unchanged on
N .

For this purpose the feedback law is devided into two summands

r(x1) =

[
r11(x1)

0

]
︸ ︷︷ ︸

r1(x1)

+

[
r12(x1)
r22(x1)

]
︸ ︷︷ ︸

r2(x1)

(26)
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with corresponding matrix
Mk�

B (x1) =
[
Mk�

B1(x1) Mk�

B2(x1)
]

from (24), whereas Mk�

B1(x1) and Mk�

B2(x1) determine the contribution of the fictitious inputs x2 and the primary
input variables u respectively. Suppose that Mk�

B (x1)r2(x1) = 0, ∀x1 ∈ N . Thus the second part of (26) does
not influence the dynamics on N and may be used for instance to make this manifold attracting. Hence the
dynamics on N are determined by r1(x1) only. Since the input variables u belonging to the original descriptor
system are assumed to be chosen independently on N at any time the feedback for system simulation must not
use them as input variables. This yields the specific structure of r1(x1) with r21(x1) = 0 which has to be chosen
for system simulation. For the robotic manipulator rk� = pc is actually fulfilled. Furthermore Mk�

B1(x1) is not
only quadratic but also regular. So the coupling control r(x1) can be written as feedback using x2 as input variables
only. As a direct consequence the vector-valued function r11 : M →R

pc×1 and hence the dynamics on the invariant
manifold of admissible states are uniquely determined. Since there are no further degrees of freedom for r(x1) on
N , the resulting dynamics have to be just the open loop dynamics of the original differential-algebraic system.
Additionally because Mk�

B1(x1) is regular Im
(
Mk�

B2(x1)
)
∈ Im

(
Mk�

B1(x1)
)

is implied. Consequently a feedforward
gain of the form

f (x1) =

[
f1(x1)
f2(x1)

]
=

[
f1(x1)

I

]
may always be chosen. Therefore the influence ũ on the controlled system precisely equals the influence of u on
system (13),(14) as long as x1 ∈N . This can also be written as ũ = u for the set of admissible states.

So finally under some rank assumptions the required feedback gain for system simulation could be found by an
appropriate structural constraint given in (26).

3.5 Feedback control on N

The derived closed loop model for system simulation (25) can now be used for further system analysis and classical
feedback design. Note, that this is indeed significantly easier than dealing with the original set of differential-
algebraic equations. For the examined parallel robotic manipulator dimN = 4 can be obtained. Physically this is
quite intuitive. Considering a fixed pose, which means that the elbow links will not be stretched during operation,
the kinematics are completely determined by the (x,y)-coordinates of the TCP. Accordingly the mechanical system
has two degrees of freedom which yields a state space representation of dimension four on N .

The following idea is to achieve a classical feedback linearization (see [2]) on the invariant manifold of admissible
states. Therefore two purely kinematic control variables

y1 =�r1e ·�ex = l11 cosq11 + l12 cosq12

y2 =�r1e ·�ey = l11 sinq11 + l12 sinq12
(27)

are defined intended for positioning the TCP. Obviously since there are three independent input variables τ1, τ2, τ3
the problem is non quadratic. The examination of the control variables (27) yields that they are independent and
have relative degree two each, such that by an appropriate choice of local coordinates the dynamics on N can
be defined by these two outputs. Therefore another third control variable of relative degree zero has to be added.
Note, that the zero dynamics of the twelfth order simulation model are rendered stable by the inner feedback loop
for system simulation.

As third control variable hence

y3 = τ1 + τ2 + τ3 (28)

is defined which allows prestressing of the manipulator. This is quite important and simultaneously one of the most
significant advantages of such a type of robot since position accuracy may be increased. Note, that (28) contains
another input affine output equation.

Finally an exact input-output linearization can be carried out allowing the placement of four poles on the configu-
ration space of the planar redundant robotic manipulator. As far as the original descriptor system is concerned no
such zero dynamics are going to appear.

4 Simulation results
Considering the robotic example some numerical simulation results will be presented. The maximal invariant man-
ifold N has dimension four and is embedded into an 12-dimensional state space. Since the mentioned assumptions
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Figure 3: Numerical integration of the controlled system

for applying the constraint dynamics algorithm are satisfied this manifold is made attractive by the proposed feed-
back law for system simulation. For that purpose all eight poles are put to λic =−25 for i = 1, . . . ,8. In addition a
classical state feedback controller is designed on N based on the exact input-output linearization procedure. The
corresponding poles are located at λifb = −5 for i = 1, . . . ,4. As depicted in figure 3 from initially inconsistent
conditions all tip ends of the three arms are pulled to one point, which means that the trajectory tends to the set
of admissible states. Exemplarily this is again shown in figure 4 for the coupling errors with respect to two of the
four holonomic equations, namely (�r3e−�r1e) ·�ex and (�r3e−�r1e) ·�ey. Note, that once N is reached independently
of any chosen input variable vector it will never be left. In the following a certain trajectory consisting of a straight
line, a curve of 90 degrees and another straight line is tracked by an appropriate feedforward control. The results
are not surprising since no disturbances are appearing. In addition after two seconds the structure is prestressed by
applying an offset of −10Nm to the sum of the three driving torques. This results in the joint forces acting on the
first arm which change significantly after two seconds as can be seen in figure 5.

5 Summary and conclusion
In this contribution a systematic approach of modelling, simulation and control of a class of nonlinear descriptor
systems has been derived. As far as mechanical systems are concerned rather than eliminating auxiliary coordinates
or substituting holonomic by nonholonomic bindings the differential-algebraic equations including the holonomic
bindings are used directly as starting point for further system analysis. Hence the overall mechanical system can
be divided into smaller parts which simplifies the modelling procedure significantly.

Introducing some additional, fictitious input and output variables the differential-algebraic model can be interpreted
as a coupling or constraint control problem. Under some regularity assumptions the constraint dynamics algorithm
may be exploited to compute the maximal controlled invariant submanifold of admissible states for the mechanical
model including a constructive way of designing an appropriate feedback law. Even though further investigations
are necessary it seems that the mentioned regularity assumptions are always fulfilled as long as the mechanical
problem formulation of the descriptor system is well-posed. Considering the elements of the cut open system
having tree structure this means that the number of the defined independent joint forces or torques are suitable of
keeping the respective joint together.

However if the regularity assumptions are satisfied the proposed procedure does not only allow a numerical reli-
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able method for system simulation with standard integration tools, but also permits a natural physical inside into
the mechanical system since the number of degrees of freedom of the can directly be checked considering the
dimension of the maximal controlled invariant manifold which renders the defined fictitious output variables zero.
Furthermore by some modifications to the feedback law this manifold can be made an attractive set such that
standard integration methods may be used even if inconsistent initial conditions appear.

The remaining degrees of freedom in the controller design procedure can be used to make the system behave in
a desired way on the submanifold of allowed states. This can either be used in order to design a controller in the
classical sense to solve some trajectory following problems or to simulate the robotic system without any exterior
control. The latter control object is achieved by introducing some structural constraints into the feedback law.
This feedback just recovers the finite dynamics of the original differential-algebraic system on submanifold of
admissible states and is therefore a suitable tool for the numerical stable simulation.

The procedure has been exemplarily carried out in order to analyze the rather involved and nonlinear dynamics of
a planar redundant parallel robot.

For future works and for deeper understanding the solvability of the problem should be referred to basic properties
of the differential-algebraic model such as formal integrability for instance. Furthermore it is desirable that direct
feedthrough can be included in an input affine or eventually even in arbitrary fashion in order to expand the class
of treatable systems. This is especially important to include constitutive equations such as material laws, springs
or dampers into this way of modelling.
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