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Abstract. Research in the field of robotics is tightly connected to simulation tools for many reasons.
On one side, simulation supports the development of new advanced control algorithms and on the
other side it is always not feasible to build a whole robot system to test some algorithms or it is not
safe to perform tests on a real system (at least in the first design stages). In the paper we present an
integrated environment for the design and testing of advanced robot control schemes, including visual
tracking, force feedback on a single robot or in multi-robot applications. The kernel of our simulation
environment is MATLAB/Simulink. The main capabilities are: the simulation of the kinematics and
dynamics of manipulators, the integration of different sensor systems like vision and force sensors,
scenarios for complex robot tasks, the visualization of robots and their environment and the integration
of real robots in the simulation loop. The advantage of our system is the simplicity, which allows easy
integration of different robots, sensors and other devices. Some of these can be easier simulated by
using other tools. Hence, other simulation tools can be used for the simulation of different parts of the
system and then these subsystems are integrated in out simulation environment. The other important
feature is easy final testing of developed control algorithms. Namely, for final testing of the control
algorithms the models in the simulation scheme are just replaced by interface blocks for real system
and the user does not need to consider implementation details. Finally, to show the efficiency and
usability of our control design environment we outline some typical experimental examples using our
robots. We explain some typical control design procedures from the “pure” simulation to the testing of
algorithms on real robots.

1 Introduction
The ways and methods in robotics research and development have always been influenced by the tools used. This
is especially true when one considers the profound impact of recent technologies on robotics, especially the de-
velopment of computers which become indispensable when designing the complex systems like robots. Not many
years ago, computing cost was still a significant factor to consider when deriving algorithms and new modeling
techniques[1, 2, 3]. Nowadays, distributed computing, network technology and the computing power developed
by commercial equipment open new possibilities for doing systems design and implementation. However, in spite
of all that the creativity of a human designer can not be left out in the design process. The best solution seems to
be to provide the designer with proper tools which significantly increase his efficiency. Among them, the simula-
tion has been recognized as an important tool in designing the new products, investigating their performances and
also in designing applications of these products. For complex systems as robots the simulation tools can certainly
enhance the design, development, and even the operation of the robotic systems. Augmenting the simulation with
visualization tools and interfaces, one can simulate the operation of the robotic systems in a very realistic way.

Currently, many different simulation tools for robotic systems are available. They differ from each other depending
on which aspect of the robot research they support, how open they are or on which platforms they work. How-
ever, many tools are not always fulfilling all the requirements of the research and teaching activities in robotic
laboratories like reconfigurability, openness and ease of use, etc.

Reconfigurability and openness are features already recognized by many as essential in the development of ad-
vanced robot control algorithms [4, 5, 6]. Not only is it important to have easy access to the system at all levels
(e.g. from high-level supervisory control all the way down to fast servo loops at the lowest level), but it is a
necessity to have open control architectures where software modules can be modified and exteroceptive sensors
like force/torque sensors and vision systems can be easily integrated. Reconfigurability should also be reflected
when more fundamental changes to the controller architecture are required, in the necessity of quickly being able
to make modifications in the original design and verify the effect of these modifications on the system. In other
words, the user should be able to quickly modify the structure of the control without having to alter the simulation
system itself.

In the last decade the software has become more and more easy to use. This is still one of the main major
issues when selecting a software tool. First of all, the tools are used by many users in a laboratory and not all
of them have the same expertise. To boost the knowledge exchange, it is of benefit that they work with the same
tools. Next, testing of different control algorithms on real robotic systems is in general not very user friendly: the
algorithms usually have to be rewritten for the real-time execution and the different implementation details have
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to be considered [4, 7]. This forces the user to devote a large part of the design time to topics not connected with
the main issues of the control design, especially when he is not interested in software implementation issues. The
ease of use becomes even more important when students are working with robots. In most cases they work in a
laboratory for a shorter period, they are focused on their projects and they could become frustrated if they have to
learn a lot of things not directly connected to their tasks. Finally, in research laboratories different robot systems
are used equipped with more or less open proprietary hardware and software architecture. Therefore, it is much
desired that the control design environment is unified, i.e. the same tools can be used for all robot systems.

The simulation tools for robotic systems can be divided into two major groups: tools based on general simulation
systems and special tools for robot systems [8]. Tools based on general simulation systems are usually represented
as special modules, libraries or user interfaces which simplify the building of robot systems and environments
within these general simulation systems (e.g. SolidWorks [9]). On the other hand, special simulation tools for
robots cover one or more tasks in robotics like off-line programming and design of robot work cells (e.g. Robcad
[10]) or kinematic and dynamic analysis [11, 12]. They can be specialized for special types of robots like mobile
robots, underwater robots, parallel mechanisms, or they are assigned to predefined robot family. Depending on the
particular application different structural attributes and functional parameters have to be modelled.

For the use in research and teaching laboratories, robot simulation tools focused on the motion of the robotic
manipulator in different environments are important, especially those for the design of robot control systems [13,
11, 12, 14]. Recently, Microsoft Robotics Studio (MSRS) [13] has been launched with a general aim to unify robot
programming for hobbyist, academic and commercial developers and to create robot applications for a variety of
hardware platforms. The system enables both remotely connected and robot-based scenarios using .NET and XML
protocols. Simulation engine enables real-time physics simulation and interaction between simulated entities. Each
part of control loop can be substituted with the real or simulated hardware. Although the system is still under
the development, it is not easy to add new entity, for example a new robot or a new sensor. One of the major
drawbacks seems to be the low data throughput rate, which does not allow the realization of complex control laws
at high sampling frequency. Therefore, it is not clear yet if MSRS is appropriate for research robotics, especially
for complex systems. Real time requirements are better solved in another programming/simulation framework,
MCA2 [15]. MCA is a modular, network transparent and realtime capable C/C++ framework for controlling
robots and other hardware. The main platform is Linux/RTLinux, but support for Win32 and MCA OS/X also
exists. However, it is still a complex system and therefore less appropriate for education and students projects.

MATLAB is definitely one of the most used platforms for the modelling and simulation of various kind of systems
and it is not surprising that it has been used intensively for the simulation of robot systems. “The Robotics Tool-
box” [11] provides many functions that are required in robotics and addresses areas such as kinematics, dynamics,
and trajectory generation. The Toolbox is useful for simulation as well as for analyzing the results from experi-
ments with real robots, and can be a powerful tool for education. However, it is not very good for the simulation
in Simulink and for the hardware-in-the-loop simulation “SimMechanics Toolbox” [12] extends Simulink with the
tools for modelling and simulating mechanical systems. With SimMechanics, one can model and simulate me-
chanical systems with a suite of tools to specify bodies and their mass properties, their possible motions, kinematic
constraints, and coordinate systems and to initiate and measure body motions.

In the following, we present our approach to the integrated environment for the design and testing of robot control
systems. Our framework is not intended as an alternative to the MSRS or MCA2. It is not as complex as MSRS
and it does not possess physic simulation capabilities. On the other hand, real time capabilities can not be com-
pared to the MCA2. The advantage of our system is the simplicity, which allows easy integration of new entities
and is also very appropriate for the education and research robotics. First we present our concept of the use of
simulation tools in the control design for research and education. Next, the experimental setup in our laboratory is
described. Finally, to show the efficiency and usability of our control design environment we outline some typical
experimental examples using our service robot.

2 The concept
The importance of simulation tools in the development of robot control systems has been recognized by our team
very early. We have been using different simulation tools for over 20 years and many of them have been developed
in our laboratory. In the last decade we have been using for the control design MATLAB/Simulink based integrated
environment based on Planar Manipulators Toolbox for dynamic simulation of redundant planar manipulators [7].
It enables the use of different sensors in the control loop and also the real-time implementation of the controller
and hardware-in-the-loop simulation. Figure 1 shows the general simulation scheme in this environment. A crucial
feature inherited in this scheme is indicated by the mode switches. Namely, the user can easy switch between using
model or a real system in the simulation loop. This is one of the main features which we need for development of
robot control systems. The Planar Manipulators Toolbox has proved to be a very useful and effective tool for many
purposes, but is has been primary designed for kinematic and dynamic simulation of planar manipulators and to
develop and test control algorithms on the lower control level, especially for redundant manipulators. In the last
years, the scope of our research is oriented more in the development of control systems for humanoid and service
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Figure 1: A block diagram of the integrated environment

robots. These robots have in general a more complex mechanical structure with many degrees-of-freedom. So,
complex kinematic and dynamic models are necessary to simulate them. Furthermore, the control methods and
algorithms we are developing are now usually a part of the higher robot control levels and the low level close-loop
control algorithms are assumed to be a solved issue. These high level control algorithms can become very complex
and may even require parallel computation distributed over more computers.

Considering all new requirements, which are:

• to simulate the kinematics and dynamics of arbitrary chosen kinematic chain describing different manipula-
tors,

• to enable integration of different sensor systems like vision and force sensors,

• to enable simulation of scenarios for complex robot tasks,

• to include the model the robots’ environments,

• to visualize the robots and their environment and

• to enable integration of real robots in the simulation loop.

we had to reconsider the concept of the control design environment we will use in future. Based on our good
experience with MATLAB/Simulink we have decided that this environment will be the kernel of our simulation
tools. However, some of the above requirements can be easier fulfilled by using other tools. For example, the
visualization of the robot and the environment can be easily done by dedicated graphics tools. Furthermore,
advanced robot control strategies rely intensively on feedback sensor information. The most complex sensor
system is the vision system, which can have several configurations and can be implemented on a single computer
or on a computer cluster composed of many computers running different operating systems. To integrate such a
diversity of hardware components in unique framework we have decided to use the ethernet communication and
the UDP protocol. In this way, we have maximal possible "degree-of-openness" of the system. Fig. 2 shows a
typical scheme of our robot integrated environment.

Main Control
(MATLAB/Simulink)

Vision
System

Force/Torque
Sensors

Robot 1
Interface

Robot 1

Vision System
Interface

Force/Torque
Sensor

Interface

Animation 
Visualization

Robot
Interface

Robot

Sensor
Interface

Sensor
System

Robot with
Sensors

Interface

Ethernet - UDP

Figure 2: A functional block diagram of the robot integrated environment in Robotics Laboratory including the robot
PA10, mobile platform Nomad XR 4000 and sensor systems

In this scheme, each block can represent a real system or a model of that system. Note that because we are
using ethernet communication between the blocks, different software tools on different platforms can be used to
simulate specific parts of the system. Consequently, the simulation environment can consist of several interacting
applications, each representing a part of the system.
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3 The experimental setup
The experimental setup in our Robotics Laboratory consists of several robots: the Mitsubishi PA10 robot which
can be mounted on the Nomad XR 4000 mobile platform, humanoid robot Fujitsu HOAP3 and a 7 DOF humanoid
head. They serve to research new approaches in the service and humanoid robotics.

In the following examples we use the Mitsubishi PA10 robot (see Figure 3). The PA10 robot is a general purpose
seven degrees of freedom robot arm with brushless AC Motors and harmonic drive transmission in each joint. The
robot has an open architecture as well as in the hardware as in the software, and this provides the possibility to
control and modify any aspect of the robot’s behavior and to include new sensor information to the control system.
The MHI controller is a four layer controller based on ARCNET which allows to control the robot in velocity mode
at 100Hz. In same applications, it turned out that the MHI robot controller is not appropriate due to the limited
sampling frequency, speed and acceleration limits and redundancy resolution algorithms used for the robot control.
Therefore, we have developed an interface which communicates with the robot power system via ARCNET, which
enables direct access to the velocity and torque motor inputs with sampling rates up to 700 Hz.

Figure 3: Experimental setup (Mitsubishi PA10, vision system and force sensor)

4 Simulink block library
In Simulink, a system is modelled by combining input-output blocks. To gain the transparency we try to represent a
system by the block structure with several hierarchical levels, i.e. by combining different basic blocks subsystems
are built which become a single block at the higher level. In Figure 1 typical robot subsystems can be seen:
the trajectory generation, the controller, the model of the manipulator and the environment and the animation of
manipulator motion. Figure 4 shows the Robot systems block library. The goal of the library is to provide blocks
which are needed to simulate robotic systems and can not be modelled with standard blocks. First of all, this are the
blocks for robot kinematic and dynamic models, the blocks for sensors systems, the typical transformations present
in robot systems and the special interface blocks for robots, sensors and all other communications. Additionally, the
library includes some blocks with standard subsystems like task space controllers, trajectory generation modules,
etc.

(c) 2008 IJS
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Figure 4: Simulink Robot systems library

4.1 Robot models

Let the configuration of the manipulator be represented by the vector qqq of n joint positions, and the end-effector
position (and orientation) by m-dimensional vector xxx of task positions. The joint and task coordinates are related
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by the following expressions

xxx = p(qqq), ẋxx = J(qqq)q̇qq, ẍxx = Jq̈qq+ J̇q̇qq (1)

where J is the Jacobian matrix, and the overall dynamic behaviour of the manipulator is described by the following
equation

τττ = H(qqq)q̈qq+h(q̇qq,qqq)+ggg(qqq)− τττF (2)

where τ is the vector of control torques, H is the symmetric positive-definite inertia matrix, h is the vector of
Coriolis and centrifugal forces, ggg is the vector of gravity forces, and vector τττF represents the torques due to the
external forces acting on the manipulator.

The robot model blocks in the library (see Figure 5) represent the basic terms of the system as given in the above
equations. Hence, the modelling of the robot is actually only the transformation of the model equations into block
diagrams. In the library there are model blocks for all robots we are using. For example, the dynamic model
described by the Eq. 2 for the PA10 robot, i.e. the block “���� ��� �	
” in the library, is built using the basic
block “���� ��� ��� �	
” as shown on Fig. 6, where the model matrices H, hand ggg of the robot mechanism are
calculated. The same principle is used for other robots and model types. Therefore, if one wants to use a dynamic
model for another robot, he has only to substitute the block “���� ��� ��� �	
” with an adequate block for the
desired robot. In the same way, the other common subsystem which includes models is built. Figure 7 shows the
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task space controller for PA10 robot used later in examples. Here, a kinematic model of a robot is used to obtain
direct kinematic transformation (end-effector position vector and rotational matrix) and the Jacobian matrix of the
robot, which are needed in the control algorithm.
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Figure 7: A block diagram representing the task space controller

For hardware-in-the-loop simulation, it is necessary to use hardware interfaces with corresponding software drivers
to include a real robots into the control loop. Usually, in case of robotic manipulators interfaces for actuators and
sensors are needed. In the past, it was common to use D/A convertors for controlling the actuators and joint
positions were measured via incremental encoders. However, contemporary robot controllers and sensor systems
enable the communication via different networks protocols like ethernet, Profibus, CAN, etc. In the Robot systems
library, each robot robot has special interface blocks which allow simple integration of them into the simulation
loop. For example, for the PA10 robot we have prepared drivers to control the robot using the MHI controller and
using the ethernet and UDP protocol.

Additionally, we have developed external applications for the simulation of our robots, which have the same
interface as real robots. Using this applications, the control system realized in Matlab/Simulink is the same for
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the model or the real robot, i.e. the same interface blocks are used when a model or a real robot is included in the
simulation loop. This enables easy and safe testing of control algorithms and the tests can be made even if the real
robot is not available. When animation and visualization are also included, the simulation is even more realistic.

4.2 Integration of sensors

Advanced robotics is characterized by the variety of complex sensory system, e.g. vision sensors, force sensors,
acoustic sensors, laser scanners, proximity sensor, etc. Therefore it is extremely important to apply as accurate
as possible sensor models into the simulation environment. Models of sensors are completely transparent to the
design environment, i.e. real sensor can be substituted with the simulated one and vice versa in the control loop.

The integration of sensors depends on their characteristics. Complex sensor systems like vision and acoustic sen-
sors, or more advanced laser proximity sensors require relatively high computational power for signal processing.
In many cases, it is difficult to accomplish all required data processing on the local computer. Often we have
to apply a remote computer or even a remote computer cluster in order to obtain required computational power.
In such a case, the subsystems are connected through ethernet with UDP protocol. We have developed a special
protocol classes for different sensors, actuators and other subsystems. However, the performance is also affected
by the communication delays. Therefore, it is favourable to process signals of high frame-rate sensor, such as joint
encoders, tachometers, force sensors, etc. on the local computer.

4.3 Matlab robot language interpreter

When designing and testing complex robot tasks, it has turned out that standard Simulink blocks which can gener-
ate arbitrary trajectory can not provide all the flexibility needed for complex robot tasks, especially for experimen-
tal work in service and humanoid robotics where the desired motion depends on the system/environment states.
Commonly used solution for the definition of robot tasks are robot languages. Therefore, we have developed a
MATLAB/Simulink block which can interpret the robot language. Included in the simulation it serves as the robot
motion generator and supervisor. The developed interpreter module for Matlab Robot Language (MatRoL) is BA-
SIC like programming language extended with special commands for the robot control and supports all MATLAB
interpreter commands. In this way we have the advantage of a simple robot task definition and access to compre-
hensive MATLAB computation capabilities. The usage of the robot language is also favourable for the education.
Students can learn and accomplish their laboratory exercises much faster using robot language and the integrated
environment allows safe testing of their algorithms on models and final tests on the real robots.

MatRoL is entirely written in Matlab. It has common instructions for the program flow (�� ���� ����	 �
�

����	 ����� �����	 �
�
 �������	 �
��� ������������� �� ������) and special commands for the
robot control (���!�	 !
"�	 ��
�#�	 $����	 ���$	 �##�������
�	 �
�#�	 ����!
"�	 ���%�#&

�
�'). Additionally, all Matlab commands can be executed within a MatRoL program as an instruction. In this
way we can use powerful Matlab matrix computation capability for controlling robot pose and for complex compu-
tation generally needed when vision and force sensors are applied. MatRoL supports various interpolation modes
in Cartesian and task space, and supports also redundant robot systems, e.g. a special command ����!
"� is used
to define self movement when kinematically redundant mechanisms are used. Each robot in the simulation envi-
ronment has its own MatRoL block, i.e. a special program. Program synchronization is done by assigning global
variables, which can be signals, vectors, frames, or other. The MatRoL supports frame the orientation definition in
roll-pitch-yaw angles, Euler angles and quaternions, while the interpolation is accomplished using the quaternions.
The script in Figure 8 has been used for the vision based manipulation as explained later in section 5.2.
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Figure 8: MatRoL script for the the vision based manipulation
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4.4 Visualization and animation

It is very important to visualize the simulation results. Especially in robotics it is necessary to “see” the motion of
the robot and objects in the working environment. In our system we relay on external software for the visualization
and animation of robots. In general, joint angles of robotic manipulators as well as the position and orientation
of the other simulated objects in the scene are passed to the visualization tools using TCP/IP or UDP protocol.
Currently, we have integrated into our simulation environment two visualization software packages - RoboWorks
[16] and Blender[17].

Roboworks incorporates simple, but efficient modeler. Because of its simplicity RoboWorks package is the
favourable tool for the visualization of simpler systems, i.e. one or two robots in non-complex environment.
Figure 9 shows the animation of our HOAP 3 humanoid robot and also in the following examples the RoboWorks
environment has been used for the visualization.

For more complex scenes we use Blender, an open source multi-platform 3D computer animation program, which
has a lot of features that are potentially interesting for engineering purposes, such as the simulation and program-
ming of robots, machine tools, humans and animals, and the visualization and post-processing of all sorts of data
that come out of such biological or artificial “devices”. Blender supports also scripts (via Python interfaces to the
core C/C++ code), hence it can be extended in many different ways. Among others, Blender has the capability of
placing moving cameras at any link of the kinematic chain, it supports the real time photo realistic rendering for
the virtual reality simulation and has also a physics engine for the simulation of the interactions between entities.

Figure 9: Animation of the HOAP 3 humanoid
robot using RoboWorks™

Figure 10: Animation of the PA10 robot in Blender

4.5 Real-time simulation

The real-time performance of the control algorithm is very important when dealing with low-level control. How-
ever, when developing higher level control algorithms real-time may be also important especially when high sample
frequency improves the performance of the system. Therefore, when manipulator-in-the loop simulation is per-
formed, the simulation system which controls the robot system has to provide real-time capabilities and enable high
sample frequencies. There are many real-time operating systems as Real Time Linux, QNX, EYRX, SMX, etc.
Disadvantages of these operational systems are time-consuming software development and incompatibility with
other systems. The algorithms are usually written in C or some other low-level programming language, where more
sophisticated control algorithms requires more time and increase the chance of error. Due to the above mentioned
disadvantages of some real-time operation systems, we use the Matlab/Simulink and the xPC Target operation sys-
tem whenever possible [18]. xPC Target enables real-time simulation and hardware-in-the-loop simulation using
corresponding interfaces. It is a good prototyping tool that enables to connect Matlab/Simulink models to physical
systems and to execute simulation in real-time on PC-compatible hardware. As xPC Target supports also UDP
communication, this was also one of the reasons to select the UDP for the communication between different appli-
cations in the simulation environment. Nevertheless, using Matlab/Simulink and xPC Target environment brings
some disadvantages. Most of the hardware used for a robot control, which is available on the market, does not
provide drivers for xPC Target. Therefore, we had to develop drivers for our our robots and sensors.

5 Case studies
To show the efficiency, flexibility and usability of our control design environment we outline some typical exper-
imental examples using the Mitsubishi PA robot and the mobile platform. We explain the compete design of the
control system different simulation schemes used in this procedure from the "pure" Simulink simulation schemes,
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where the complete system is simulated in MATLAB/Simulink, to the hardware-in-the-loop schemes, where a real
robot and sensor systems are part of the simulation loop and only the controller is realized in MATLAB/Simulink.

5.1 Playing yo-yo

In the first example we use the Mitsubishi PA10 robot arm to play yo-yo. The objective of playing the yo-yo is
to keep the amplitude of the yo-yo at a desired level. The yo-yo is tied to the tip of the robot. To be able to play
the yo-yo it is necessary to know the position of the yo-yo and the force in the string or the velocity of the yo-yo
(depending on the control algorithm). A WebCam has been used to measure the position of the yo-yo. To measure
the string force a JR3 force/torque sensor mounted on the end-effector of the robot was used. The experimental
setup is shown in Fig. 3. The control should be implemented on PC’s in MATLAB/SIMULINK environment and
we wanted to use the PA10 motion control board which allows to control the end-effector positions of the robot.

In the first step of the control design when different control strategies have to be tested, we simulated the whole
system in Simulink. We used the PA10 kinematic model and we had to develop a Simulink model of the yo-yo.
The top level simulation scheme is shown in Figure 11. The main three blocks are the controller, the robot model
and a special model of the yo-yo [19]. As we want to move the robot end-effector only in the vertical direction the
z-axis motion (x and y positions are fixed to the initial values), we have to use a kinematic task space controller.
This subsystem can be easily composed by combining blocks in our Simulink library as it is shown in Figure 12.
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Figure 12: PA10 model with kinematic task space position controller

After the best control strategy has been verified using this simulation scheme, the next step is to test the control
when the sensor systems information is obtained via ethernet connection. Therefore, we have developed a special
yo-yo simulator, which receives the hand position and sends the position of the yo-yo and the string force via
ethernet connection using UDP protocol (see Figure 15). The simulation scheme is the same except that instead of
yo-yo Simulink model the corresponding UDP interface blocks are used (see Figures 13 and 14).

As the external yo-yo simulator is a real time simulator, also in Simulink real-time simulation should be used. As
the sampling frequency in this case is rather low (100 Hz for robot control and 25Hz for vision system) and the
computation time of the Simulink model is small enough, we can use a special block for real-time synchronization.
After tuning the controller parameters the simulation results for the yo-yo swinging height as shown on Figure 16
have been obtained.

Finally, when the designed control algorithms give satisfactory simulation results, we can test the control strategy
on a real system. In manipulator-in-the-loop simulation, the model of the PA10 robot is replaced by the corre-
sponding interface blocks. The position of the yo-yo is now obtained from the vision system and the force sensor
via the same interface blocks as when the yo-yo simulator has been used. Figure 19 shows the user interface of
the WebCam based vision system. As explained before, special Simulink drivers for interfacing the PA10 robot
control board, the JR3 force sensor and the WebCam based vision system are already part of our Simulink library.
Therefore, the user just replaces the model blocks. The corresponding scheme is shown in Figures 17 and 18. From
the top level scheme it can easily be seen that the controller part of the system has not been changed and is the
same as in the previous simulation schemes. The final experimental results are shown on Figure 20. By comparing
them with the simulation results on Figure 16 one can see that they are very similar. This confirms that simulation
tools can be an important tool when designing control system.
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F
2

y
1

UDP Send

Hand  pos

UDP Receive

Yoyo  pos

Gripper
4

rzdd
3

rzd
2

rz
1

Figure 14: Interface for external yo-yo simulator (���� ����� block)
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Figure 19: Capturing and identification of the yo-yo position with the WebCam
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Figure 20: Swinging yo-yo motion - Experimental results
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5.2 Vision based manipulation

In the second example we show the visual tracking experiment. The task for the robot has been to compose a text
using cubes marked with letters. The cubes have been randomly dispersed on the table. The robot has to identify
a cube with the desired letter using vision, to grasp this cube and to place it on the table in order to compose
the desired text. Note that cubes were arbitrary rotated in all three axes. Therefore, the visual tracking algorithm
has to track not only the position of a cube but also the object orientation. Figure 23 shows the experimental
setup. To detect the object position and orientation we have used a USB WebCam and the “ArToolKit” - an open
source software library for building Augmented Reality (AR) applications [20]. These are applications that involve
the overlay of virtual imagery on the real world. Although, augmented reality is generally not needed in robotics,
ArToolKot was chosen because of its object recognition capabilities. ArToolKit is capable of calculating 3D object
position and orientation using single camera. The pose estimation is based on exact knowledge of the observed
object geometry and its projection in the camera.

Figure 21: Experimental setup for vision based manipulation of objects

To integrate the ArToolKit in our simulation environment we have augmented it with the functionality to receive
the marker description over ethernet using the UDP protocol and to send the homogenous transformation matrix of
the recognized marker. The visual servoing algorithm has been implemented in MatRoL as a Matlab script inside
the trajectory generation module. Figure 22 shows the Simulink block scheme for the redundant robot control
with added blocks for the interface with ArToolKit and MatRoL block which interprets the appropriately written
MatRoL program. The application has been first tested using the models. Here we have used an external application
to simulate the kinematics of the PA10 robot which has been included in the Simulink by the same interface blocks
as the real robot PA10. In the experiment the simulation scheme has remained the same, only another application
has to be started - the one for communication with the PA10 robot. As the control-loop sampling rate is low, it was
not necessary to use the real-time simulation. As before, a special block has been used for the synchronization.
Figure 23 shows the robot and the control computer screen during the task execution.
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Figure 23: Vision based manipulation experiment: Robot is picking cube “A”

5.3 Playing Power®Ball

In the third example the robot should perform the spinning of a Power®Ball – a hand held gyroscopic toy or
exerciser. To accelerate the rotor of the device with a robot, we first measured the way a human does it. Using
the results from the motion capture, we transferred the movement of the wrist to the end-effector movement of
the robot. For a successful spin-up a synchronization of the exerted torque with the control velocity of the cir-
cular motion is necessary. Figure 25 shows the experimental setup. Different control approaches using feedback
information from the velocity counter and force/torque sensor were applied. First, they have been tested using
SimMechanics model of the PA10 and the model of the Power®Ball. Figure 24 shows the block scheme and the
animation of the system in RoboWorks. Finally, the experiment with a real robot in the loop has been done The
model of the robot and the Power®Ball has been replaced with the interface blocks as explained before. Figure 25
shows the experimental setup.

PowerBall

M

PB

q

PA10 
PB Cont .

q5d

q6d

q

qd

PA10
PowerBall

qd

PB

RoboWorks
Animation

Mitsubishi _PA−10
(simmehanics / kin )

qqd

Adapting and repeating

M

q5d

q6d

Figure 24: Power®Ball simulation: top level block scheme in Simulink and animation of the PA10 robot on Nomad
platform and the Power®Ball

Figure 25: Experimental setup for spinning up the Power®Ball with PA10 robot
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6 Conclusion
The concept of the presented control design environment is a result of our experience in the use of robots in
research and education. It has proved to be a very useful and effective tool for fast and safe development and
testing of advanced control schemes and task planning algorithms, including force control and visual feedback.
The main part is implemented in MATLAB/Simulink and we have developed models for the robots and sensors
used in our laboratory. To integrate the variety of components in an unique framework we have decided to allow
the use of different tools for their simulation. So, the simulation environment can be composed of more than
one application and the ethernet is used for the communication between them. In this way, our environment is
very open and can be very easily extended and adapted to different requirements and applied to any types of
robotic manipulators. We have augmented the simulation with the animation and we show the importance of the
possibilities offered by the simulation in the “virtual” world. One of the most important features of our simulation
environment is that the testing on real robots is made very easy — the model real systems is simply replaced in
the simulation loop by proper interface blocks. For that purpose, we have developed interfaces for the robots and
sensors. Additionally, we have developed external applications which simulate certain robot subsystem and use
the same interface as a real system. In this way, the user can test algorithms using the final control system but on
a system on models which is very easy. Last but not least, it is an efficient tool for educational purposes. Thus, it
should be of interest to the researchers involved in the development of advanced robot systems, and for teaching
laboratories.
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