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Abstract. The product development community faces new challenges due to a drastic increase in the
scale and complexity of engineered systems. Modelling these systems is becoming increasingly impor-
tant as it allows a better process/product understanding for analysing changes while avoiding several
iteration loops. In this article a recent decomposition principle, called DSM (Design Structure Matrix),
is extended to a discrete-time dynamical system based on process components. The system is modelled
as detailed as necessary by aligning the used interaction knowledge to an introduced weighting coeffi-
cient. Proportional, functional and qualitative knowledge of the coherences is considered and linguistic
process knowledge is thereby included via Fuzzy-Logic. Hence, the developed strategy allows to handle
nonlinear relations as well as uncertainties. First applications are shown on two simplified examples,
together with analyses of process fixed points and attracting regions using well-known mathematical
methods.

1 Introduction
Process models are very important for the analysis and implementation of process improvement projects. Therefore,
structured methods helping to handle the complexity during modelling and analysing are required. One of the most
famous process modelling approaches was established by Jay W. Forrester and is known as System Dynamics [8],
[9] (and overview in [21]). The main relationships between the elements are expressed by a time-dependent integral
interdependency. This results in an examination of levels’ inflow and outflow, so that from system theoretical point
of view the created dynamical system is described by coupled differential equations. Most of the applications of
this approach are in urban commuter systems, social systems and industrial dynamics [19], [8]. Various theoretical
and practical developments made System Dynamics to a powerful modelling and simulation tool. However, it still
comes along with some disadvantages. System Dynamics models are based on Causal Loop Diagramms (CLD)
or Level-Rate-Diagramms (LRD). Getting both in an appropriate way, requires knowledge of all coherences [15].
There exist several algorithms helping to transform an insufficient CLD into an appropriate LRD. The obtained
representation of a system is therefore not unique, because of the different assumptions required by the algorithms.
For more informations see [6], [5] and [4]. Additionally, the required integral process behavior is often not clearly
defined and modelling purely discrete-time dynamical systems can cause problems [16]. Due to the required sys-
tem knowledge, there exist a couple of simulation tools specifically designed for System Dynamics applications,
helping to analyse such systems. However, exclusively trusting simulations for a better process understanding, can
result in drawing false cause-and-effect conclusions, due to the summation of quantification mistakes [7].

Large, multidisciplinary and networked systems are affected by reams of interactions within and between several
domains like components, tasks and persons [1]. A recent decomposition principle to handle such complexity and
helping to get a better process/product understanding uses a simple matrix structure format called DSM (Design
Structure Matrix), which was developed by D. Steward [17]. A basic DSM is a square matrix with identical column
and row labels. Each of them represents an item of the specified system and the whole DSM documents which
items are interacting. Depending on the considered domain, there exist several DSM variations, providing a more
comprehensive view of the interactions taking place.

The effects of identified feedback loops inside the DSM can not most often be analysed using currently available
methods. Currently these feedbacks are considered as potential sources of instability and therefore removed (if
possible) by a system redesign [11]. Such redesigns are often still done by trial and error without really knowing
their benefits.

The new approach in this paper is extending the component-based DSM to a discrete-time dynamical system in
order to allow analyses of the feedbacks therein. The approach offers different options of filling the DSM and
thereby of describing the dynamics:

• linear dynamics (i.e. proportional relations)
• nonlinear relations
• uncertainties

This allows the DSM to tackle a wide range of problems and analysis tools while simultaneously bypassing some
disadvantages of System Dynamics.
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The remainder of this paper is organized as follows: First, the handling of the Design Structure Matrix (especially
the used component-based DSM) is presented in Section 2. The expansion of the DSM will be introduced in
Section 3. In Section 4 two application examples of the illustrated approach are presented together with analytical
analyses of the processes fixed points and attracting regions using well-known mathematical methods [20].

2 The Design Structure Matrix
A DSM displays the relationships between items of a system or process in a compact matrix structure and is there-
fore a visual and analytically advantageous format [3]. It is a square matrix with identical column and row labels.
Each of them represents an item of the specified system. An off-diagonal marking signifies the dependency of
one element on another. As there exist different notations of reading, we restrict ourselves in this article to the
following notation: An "X" marking along a column reveals, which other variables that column‘s item depends on.
Accordingly, it follows that marks above (or under) the main-diagonal clarifies feedforward dependencies. If inter-
acting elements are linked across the main-diagonal, a feedback is revealed. Additionally, reading down a column
of the DSM reveals system inputs, whenever no marking is found. Repeating this procedure along a row reveals
system outputs. As mentioned before, there exist several DSM variations providing a more comprehensive view
of the interactions taking place depending on the considered domain. A distinguished overview is given in [2].
In this article, the component-based DSM is used, which obviously documents the relationships between system
components. An organized taxonomy can help to identify these dependencies and more than one interaction type
can be included by making the DSM three-dimensional [13]. By restructuring the columns and rows in a proper
way, subareas of the system interactions are detectable such as strictly feedforward dependency parts, feedbacks
and decoupled clusters. Several algorithms exist, which restructure and subclassify the DSM accordingly. There-
fore, this matrix is a simple, but powerful graphical representation of a complex dynamical system or process,
based on a component-by-component view. Hence, the DSM is widely used in product development. Figure 1
shows an enlarged component-based DSM of a climate control system from T.R Browning [2] and the detected
element-clusters therein. The DSM structure is adjusted to the introduced notation.
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Figure 1: Component-based DSM of a climate control system - detected clusters are marked [2].

Further examples and a description of the algorithms can be found in [12] and [10].

The discovered feedback loops are essential for the dynamical behavior of the overall process. In order to reduce
their potential source of instability, these feedbacks need to be further analysed, by adding more information to the
DSM in a structured way.

3 Expanding the DSM: The DynS-DSM
The extended component-based DSM, denoted as DynS-DSM (Dynamic System Design Structure Matrix), pin-
points relevant interactions between component attributes, which are classified according to their priority. There-
fore, first the participating attributes aq of the concerned clusters elements j have to be detected. This is archived
by merging all of the attributes in a matrix format, having the style of the DSM structure. The rows are in ac-
cordance with the rows of the component-based DSM. Reading across a row reveals the involved attributes of the
component. Figure 2 shows an appropriate matrix format of the attribute detection. At the end an (n x m) attribute
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Figure 2: Matrix format of the attribute detection.

matrix

A =

⎡⎢⎢⎢⎣
a1,1 a1,2 0 . . . a1,m−1 0
0 a2,2 a2,3 . . . 0 a2,m
... . . . . . . . . . . . .

...
0 0 0 . . . an,m−1 an,m

⎤⎥⎥⎥⎦ (1)

is obtained, where n is the number of components and m is the number of detected attributes. The further studies
are based on the attribute matrix A.

Now, the developed attribute matrix will be divided in several analysis matrices. The fragmentation of the attributes
is fundamental for the finally obtained system description. This results in at least three analysis matrices,

• X (system state declaration)
• I (system input declaration)
• O (system output declaration),

with

X =

⎡⎢⎢⎢⎣
x1,1 x1,2 . . . x1,m
x2,1 x2,2 . . . x2,m

...
...

. . .
...

xn,1 xn,2 . . . xn,m

⎤⎥⎥⎥⎦ , I =

⎡⎢⎢⎢⎣
i1,1 i1,2 . . . i1,m
i2,1 i2,2 . . . i2,m

...
...

. . .
...

in,1 in,2 . . . in,m

⎤⎥⎥⎥⎦ , O =

⎡⎢⎢⎢⎣
o1,1 o1,2 . . . o1,m
o2,1 o2,2 . . . o2,m

...
...

. . .
...

on,1 on,2 . . . on,m

⎤⎥⎥⎥⎦ . (2)

The entries of these matrices are equal to the corresponding attribute a j,q or zero. Adding further analysis matrices
to ease the actual modelling is always possible, but should be done with respect to the particular kind of process
and its complexity. For example a influence matrix R could be considered in a first step. The correct fragmentation
can easily be ensured, by the condition

A !
= X+ I+O+ . . .+R. (3)

Hence, it is guaranteed that every attribute according to A occurs only in one of the analysis matrices.

As mentioned before, the original component-based DSM will be extended to an attribute-based DSM, which can
now be created from the analysis matrices. In order to keep it structured, all attributes belonging to the same
component are listed next to each other. This can be done using a simple algorithm, by reading across the same
row of all introduced analysis matrices sequentially and filtering all non zeros entries out, before going on with
the next row. The resulting matrix structure is denoted with respect to the DSM as DynS-DSM (Dynamic System
Design Structure Matrix). An example of a resulting form of the DynS-DSM is depicted on the left of figure 3,
together with a detected cluster. In order to keep the figure clear, every considered component was assumed to
have one system state, input and output attribute. The first attribute represents the state for all components. Thus,
only the first column of X is unequal zero (see figure 2 and equation (2)). The second attribute represents all of the
inputs and the third one all of the outputs. However, these are no restrictions, because the DynS-DSM will be a
square matrix for any arbitrary case and so all properties of the DSM are always transferable.

The interactions between the attributes are clarified by using weighting coefficients in the range [0, 1]. Each
coefficient expresses the priority of the associated interaction due to the dynamical behavior of the process and is
thus equivalent to the requested approximation level. P.S. Raghuvanshi and S. Kumar used a similar method to
describe the interactions between system elements in [14] and called it a real valued connection.

Depending on the available information about the process, the introduced range has to be subdivided. Therefore,
in this article three classical description forms, which are expressed by the weighting factor according to the level
of knowledge, are considered (figure 3):
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Figure 3: Weighted DynS-DSM with a marked decoupled cluster (at left) and for the system analysis restructured cluster
(at right): feedback (inner), input-enlarged feedback (exterior) and shaded negligible output part.

• 0.3 (linguistical description required)
• 0.6 (proportional description required)
• 1.0 (functional description required)

The notation of reading is basically the same as for the DSM. Hence, it can be easily proven whether the DynS-
DSM is designed properly. All i j,q and o j,q are not allowed to be linked in their corresponding column or row. If
this not fulfilled, the analysis matrices have to be restructured or an additional one has to be included. For a system
analysis, the outputs are negligible first (can be determined if the phase portrait is known) and the detected clusters
have to be enlarged with their involved inputs (see figure 3 at right). Accordingly, high-weighted (significant)
clusters are detectable and the involved interactions therein can be formulated geared to the individual weighting
coefficient. The cluster enlargement with the inputs can also be done in the component-based DSM. Thus, beside
input attributes also input components of a feedback cluster can be considered in the DynS-DSM (see example
4.2).

Next, the formulated interactions are inserted in the final DynS-DSM. Proportional relationships are inserted di-
rectly, the functional coherences of the attributes are entered in a separate section. Further description forms (like
linguistical) are included in additional layers, by making the DynS-DSM three-dimensional. The structure of the
final DynS-DSM is shown in figure 4, where the two corresponding layers of the detected feedback cluster from
figure 3 are depicted. As mentioned before, interpreting the resulting DynS-DSM, reveals the system behavior
over time by a discrete-time dynamical system. The notation of reading is introduced on three interactions from
the marked cluster out of figure 3, one for each considered description.

x(k+1)
1,1 = k1x(k)

1,1 + k2x(k)
2,1 + k3i(k)2,2,

x(k+1)
2,1 =

√
k4(x2

1,1)
(k) + k5x(k)

1,1 + k6(x3
2,1)

(k)︸ ︷︷ ︸
f1

+k7i(k)1,2,

o(k+1)
1,3 =

⎧⎪⎪⎨⎪⎪⎩
F1 =

{
LOW if x(k)

1,1 and x(k)
2,1 are MEDIUM,

MEDIUM if x(k)
1,1 and x(k)

2,1 are HIGH,

F2 =
{

HIGH if x(k)
1,1 or x(k)

2,1 are LOW,

(4)

where (k) stands for the amount of iterations of discrete-time dynamical systems. The first interaction is purely
proportional and its parts are expressed in the DynS-DSM by reading down the column of x1,1. First of all, the
prefix of the interaction part, than the proportional coefficient and last the connection sign between this coefficient
and the attribute of the corresponding row. The functional relationship f1 of the second interaction is represented
in detail in an added sector. The nonlinear connection is summarised for each attribute on the self depending
cell of f1 and the corresponding proportional coefficients are included as already known. If an attribute appears
several times in the nonlinear summarisation, the proportional coefficients are listed in the polynomial order of
the attribute. If the nonlinearity is too extensive, a link to an external description can be placed instead. The
linguistical operations "and" and "or" in (4) are merged together in the functions F1 and F2. These functions are
inserted in the Fuzzy-layer (right of figure 4) and modeled using Fuzzy-Logic operations such as "MAX(MIN)".
The notation of reading is almost the same as before, only the interaction between F1, F2 and o1,3 is splitted up
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Figure 4: DynS-DSM Layers: proportional and functional relations (at left), Fuzzy-relations (at right).

in the parts used in equation (4). Using this notation, a wide range of interactions can be displayed in a compact
form and further interaction types can be added easily. Additionally, all proportional coefficients kp can be seen
as changeable inputs. Therefore, the analysis of the process can be balanced between qualitative and quantitative
modelling [7].

4 Application examples
In this section the introduced approach is applied to two simplified industrial examples. The relationships between
the elements are described as in Section 3 (linguistical, proportional and functional). The first example is a vehicle
design iteration process, where initial conditions can be chosen by the customer. As second example an assembling
process is considered, whose velocity depends on a process parameter λ .

4.1 Vehicle design iteration process

This example describes the interactions between components of a vehicle and their dynamical behavior when some
modifications are required, because of initial conditions chosen by the customer. Both the associated component-
based DSM and the reconstructed DSM are shown in figure 5. The detected feedback subarea is highlighted. The
system is reduced to this subarea, modelled qualitatively and further analysed below. The detected attributes of the
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Figure 5: Basic component-based DSM (at left) and restructured DSM with marked feedback (at right).

component a j,q are assumed to be: the performance (alternatively the rating) a j,1, the mass a j,2, the costs a j,3 and
the lower limits of the ratings a j,4. The order of the components are the same as in the marked DSM section. Thus,
the attribute matrix based on (1) can be calculated as:

A =

⎡⎢⎣a1,1 0 a1,3 0
a2,1 0 a2,3 0
a3,1 a3,2 a3,3 0
a4,1 a4,2 a4,3 a4,4

⎤⎥⎦ .
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The subdivision of the attribute matrix results in four analysis matrices: X (system states), I (inputs), O (outputs)
and R (influence). The division of the detected attributes is

X =

⎡⎢⎣ 0 0 0 0
a2,1 0 0 0
a3,1 0 0 0
a4,1 0 0 0

⎤⎥⎦ , I =

⎡⎢⎣0 . . . 0
...

. . .
...

0 . . . a4,4

⎤⎥⎦ , O =

⎡⎢⎣0 0 a1,3 0
...

...
...

...
0 0 a4,3 0

⎤⎥⎦ , R =

⎡⎢⎣a1,1 0 0 0
0 0 0 0
0 a3,2 0 0
0 a4,2 0 0

⎤⎥⎦ . (5)

Hence, there is only one fixed system input, the brake system has no state attribute and a proper fragmentation
is guaranteed, because equation (3) is fulfilled. The used descriptions of the attribute interactions and thus the
weighting coefficients are the same as in Section 3. The considered interactions weighting is shown in figure 6.
Also the restructured weighted DynS-DSM is depicted and the detected clusters for the system analysis are marked.
The linguistical connections are modelled via Fuzzy IF-THEN-RULES, which were introduced by Zadeh [22].
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Figure 6: Weighted DynS-DSM (at left) and restructured with marked clusters for system analysis (at right).

Next, the Fuzzy IF-THEN modelling will be explained in details but will not be inserted in the final DynS-DSM
(figure 9), because of the analogy to the Fuzzy-layer explained in Section 3. First, the chassis rating dependency
on the engine and the gearbox mass is considered. The Fuzzy IF-THEN-RULES are assumed to be:

x(k+1)
2,1 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

HIGH if r(k)
4,2 is HIGH or r(k)

3,2 is HIGH,

HIGH if r(k)
4,2 is MEDIUM and r(k)

3,2 is MEDIUM,

MEDIUM if r(k)
4,2 is MEDIUM and r(k)

3,2 is LOW,

MEDIUM if r(k)
4,2 is LOW and r(k)

3,2 is MEDIUM,

LOW if r(k)
4,2 is LOW and r(k)

3,2 is LOW.

The possible intervals of the inputs r4,2 and r3,2 are standardised to the used Fuzzy-space r∗4,2 and r∗3,2 ∈ [1, 10].
Suitable trapezoidal membership functions μFuzz,i are applied for Fuzzification and the membership functions
μDeFuzz,i for the Defuzzification, required to get x∗2,1,i, are chosen as singletons. Both final used membership
functions are shown in figure 7.
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Figure 7: Membership functions: For Fuzzification μFuzz,i (at left) and for Defuzzification μDeFuzz,i (at right).

The chosen M. Sugeno Defuzzification method [18] in combination with singletons is transferred to a simple Center
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of Maximum summation

x∗2,1,Sug =
∑3

i=1 μDeFuzz,i · x∗2,1,i

∑3
i=1 μDeFuzz,i

, (6)

where x∗2,1,Sug is the final value of the chassis rating in the Fuzzy-space. Additionally, due to the used singletons it is
guaranteed that the whole Fuzzy-space can be utilized. The nonlinear characteristic function x∗2,1,Sug = g(r∗4,2,r∗3,2)
can be approximated, by solving (6) for all combinations of the inputs. The functional surface is shown on the left
side of figure 8.

1 2 4 6 8 10

12
4

6
8

10
2
4
6
8

10

r∗4,2r∗3,2

x∗ 2,
1,

Su
g

2 4 6 8 10
0

50

75

100

125

150

1

10

LOW MEDIUM

HIGHx 4
,1

,m
ax

x∗2,1,Sug, r∗1,1

r∗ 1,
1

Figure 8: Functional Fuzzy-surface g(r∗4,2,r
∗
3,2) (at left) and transformation h(x∗2,1,Sug) (dashed), f2 := r∗1,1 → x4,1,max

equal f2 := x∗2,1,Sug → x4,1,max (solid) (at right).

As mentioned before, the brake system has no state attributes in X (see (5)) and therefore no attribute to be analysed
in the system representation. In addition, it is part of a feedforward cluster (see figure 6). Hence, the corresponding
elements can be fully eliminated from the system analysis. This is done in the considered example as follows: As
can be seen from figure 6, the chassis rating x2,1 affects the brake system rating r1,1, which in turn affects the engine
rating x4,1. The feedforward part of these interactions can be merged in combination with the transformation from
the Fuzzy- into the origin-space. The Fuzzy-interaction r∗1,1 = h(x∗2,1,Sug) is depicted by the dotted line on the right
of figure 8. The solid line shows the chosen transformation f2 from r∗1,1 to the maximal possible value of the engine
performance x4,1,max. Hence, f2 is also the transformation from x∗2,1,Sug to x4,1,max, whereby r∗1,1 is eliminated.

The used proportional and functional connections are just inserted in the final DynS-DSM as shown in figure 9. By
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Figure 9: DynS-DSM Layers: proportional and functional relations between the attributes.

reading the DynS-DSM as introduced in Section 3 the process behavior is mapped in the discrete-time dynamical
system ⎡⎣x∗2,1,Sug

x3,1
x4,1

⎤⎦(k+1)

=

⎡⎣ g(r∗4,2,r∗3,2)
k3 x4,1

min(max(x4,1, i4,4), f2(x∗2,1,Sug))

⎤⎦(k)

=

⎡⎣ g((k6 x4,1)
∗+(k4 x3,1)

∗)
k3 x4,1

min(max(x4,1, i4,4), f2(x∗2,1,Sug))

⎤⎦(k)

. (7)

Analysing this system reveals a cascade arrangement starting with the last row of (7). Hence, by knowing the
dynamics of x4,1 the whole system behavior is describable. For it, f2(x∗2,1,Sug) from the right of figure 8 and the
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lower limit of the engine rate i4,4 are needed. The meaningful intervals for the initial conditions (selectable by the
customer), resulting from f2(x∗2,1,Sug) and the cascade arrangement of (7), are

x(0)
4,1 ∈ [i4,4, 160] PS, x(0)

3,1 ∈ [k3 i4,4, k3 160] PS, x∗2,1
(0) ∈ [1, 10]. (8)

The Fuzzy-inputs, which are needed for the standardization described before, are now also allocable. However,
even if the costumer chooses an inexpedient initial condition, the min-operator together with the cascade system
format guarantee that the system gets back to the intervals of (8). Therefore, these span a positive invariant set in
the phase space, defined in [20], and thus it is impossible for the system to become unstable.

The general condition for such systems’ fixed points x̃ j,1 is⎡⎣x∗2,1,Sug
x3,1
x4,1

⎤⎦(k+1)

!
=

⎡⎣x∗2,1,Sug
x3,1
x4,1

⎤⎦(k)

⇒

⎡⎣x̃∗2,1,Sug
x̃3,1
x̃4,1

⎤⎦ =

⎡⎣x∗2,1,Sug
x3,1
x4,1

⎤⎦(k)

.

(9)

This applied to the system (7) reveals

x̃4,1 = x(k+1)
4,1

!
= x(k)

4,1
!
= x(k−1)

4,1
!
= x(k−2)

4,1 , (10)

where at least three iterations have to be done to be sure that the considered fixed point value of the engine rating
is accounted for each state calculation. A warranty that (9) and (10) are fulfilled for arbitrary initial conditions is
thereby also given through the systems properties (min-operator and cascade format). Thus, an asymptotic stable
fixed point, which depends on the initial conditions, is always detectable. The other state values of the active fixed
point are given by

x̃3,1 = k3 x̃4,1, x̃∗2,1 = g((k6 x̃4,1)
∗+(k4 x̃3,1)

∗). (11)

Based on this fixed point, the nearest expedient combination of the car components is chosen and the final outputs
o j,q can be determined using the DynS-DSM of figure 9.

At the end of this example it should be mentioned that, if Fuzzy-conditions are needed to prove stability, a two
dimensional linearisation around the center of the considered region or even a surface fitting can be done. Also a
derivation fitting at the borders of the region helps to find a function that approximates the linguistical knowledge
beyond the considered area.

4.2 Assembly operation

The application described next is a simplified automated wheel assembling process, while the car is moved. Be-
cause of the detailed explanation of the first example, this one is kept short and only proportional and functional
relationships between the elements are considered. The focus of this example is not on modelling, but on showing
another important stability behavior, which is also detectable using the DynS-DSM approach. The component
based DSM in figure 10 (at left) is reduced to the major components and already restructured. The basic feedback
cluster and, as mentioned in Section 3, its enlargement by the involved inputs are marked. The enlarged feedback
will be further analysed. The detected attributes, already distributed to the considered analysis matrices, are

X =

⎡⎣x1,1 0 0
x2,1 0 0
0 0 0

⎤⎦ , I =

⎡⎣0 0 0
0 0 i2,3
0 i3,2 0

⎤⎦ , O =

⎡⎣0 0 0
0 0 0
0 0 0

⎤⎦ , (12)

where the first columns represent the component velocity, the second the component mass and last the amount
of to-affix screws. To stay consistent with the rest of this contribution, the same subdivision of the weighting
coefficients is used. Figure 10 (at right) shows according to (12) the considered weighted DynS-DSM with marked
feedback and the input-enlarged feedback cluster.

The required functional interaction describing x2,1 is assumed as a second-order polynomial. This could for ex-
ample be achieved by an approximation based on several measurements of the states while changing the inputs.
Additionally, all proportional coefficients are assumed to be kp ≥ 0, with p∈ [1, 5] to guarantee that both velocities
x1,1 and x2,1 are ≥ 0 during the assembly. The resulting DynS-DSM follows analog to the general explained func-
tional layer in Section 3 (figure 4) and will be omitted. Thus, the dynamic of the feedback cluster is assumed to be
described by [

x1,1
x2,1

](k+1)

=

[
k1 i3,2 k2 x2,1

k3 (k4 i2,3 x1,1− k5 x2
1,1)

](k)
. (13)
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Figure 10: Component based DSM with marked feedback cluster (at left): feedback (inner), input-enlarged feedback
(exterior); and weighted DynS-DSM with marked clusters (at right): feedback (inner), input-enlarged feedback (exterior).

The first row of (13) reveals all possible equilibriums (x(k+1)
j,1

!
= x(k)

j,1, like in (9)) of the phase space. These are all
straight lines through zero with the gradient k1 i3,2 k2. To analyse the stable equilibriums on this possible lines, x1,1
in the second row of (13) is replaced by the first line of the system equation. This leads to

x2,1 = k3 [k4 i2,3 (k1 i3,2 k2 x2,1)− k5 (k1 i3,2 k2 x2,1)
2]. (14)

By neglecting the trivial stable equilibrium x1,1 = x2,1 = 0, equation (14) can be transformed to

1 = k3 [k4 i2,3 k1 i3,2 k2− k5 (k1 i3,2 k2)
2 x2,1]

⇔ i2,3︸︷︷︸
λ

=
1

k3 k1 i3,2 k2 k4︸ ︷︷ ︸
λc

+
k5 k1 i3,2 k2

k4︸ ︷︷ ︸
λd

x2,1, (15)

so that a local transcritical bifurcation is detected. The amount of to-affix screws i2,3 is the bifurcation parameter
and is therefore renamed λ . The critical value λc, where the local bifurcation takes place and the bifurcation
gradient λd are merged in (15). Because the possible velocities x1,1 and x2,1 are bounded, the lowest of these bounds
is a saturation of the process. Figure 11 clarifies the possible equilibrium straight line and the local bifurcation
together with the resulting stable fixed points depending on λ . The saturation, which leads to the limit of screws
λlim is also depicted. The only realisable region of the process is within the interval λ ∈ ]λc, λlim], because therein
both states are 0 < x j,1 ≤ Saturation. Hence, the desired interval of the to-affix screws can be achieved by varying
the car mass i3,2 and adjusting the proportional coefficients kp of (13).

x2,1

x1,1

x2,1 = 1
k1i3,2k2

x1,1

λ

x2,1 = 1
k1i3,2k2

x1,1

λλc
unstablestable

sta
ble

Saturation

λlim

Figure 11: Possible equilibriums of the process (at left) and bifurcation diagram (at right).

By knowing this essential behavior of the process, the critical parameters are clear and an optimisation according
to the possible ranges of the inputs can be done more effectively as only based on simulations.

5 Conclusion
A new approach for a structured modelling of complex processes has been introduced. The method is based
on a recent decomposition principle called DSM (Design Structure Matrix). The DSM is thereby step by step
extended to a discrete-time dynamical system based on component attributes. The new developed matrix is called
DynS-DSM (Dynamic System Design Structure Matrix). It has been shown that all the advantages of the DSM
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are transferable to the DynS-DSM, so that already existing algorithms of the DSM can be used. This extension
allows the DSM to tackle a wide range of problems and analysis tools. Different options of filling the DSM and
thereby describing the dynamics in the DynS-DSM were introduced. Therefore, weighting coefficients to pinpoint
different levels of required interaction knowledge have been used. The handling of nonlinear and linguistical
relation-knowledge was shown. The approach was applied to two examples, where attracting regions of fixed
points and a local bifurcation have been detected.

Accordingly, the dynamical behavior of a process can be reduced to the significant part and a dynamical model
is obtained without the knowledge of a representative process time. The analytical analyses of the process model
using well-known control theories and mathematical methods reduce the required amount of simulations for system
understanding and system improvements.
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