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Abstract. Modelling of objects of daily life is a topic which could be a motivating and fascinating 
access to mathematics education. For this reason the paper shows a possibility, how an object 
which is common to all students in school, the egg, can be an item for an exciting discussion in 
schools. Based on two mathematical definitions a figure is constructed. Based on those the 
description in polar-coordinates and Cartesian implicit equations is developed. This stepwise 
modelling cycle is shows the way how modelling of daily objects could be done in school and 
demands of curricula could be implemented. 

1 Introduction 
The concept of modelling for education has been discussed for a long time. It is a basic concept in all parts of 
sciences and in particular in mathematics. This concept is a well accepted fundamental idea (s. [14]), in case of 
the preliminary-definition of Schweiger [12] is used1: 

“A fundamental idea is a bundle of activities, strategies or techniques, which 

1. can be shown in the historical development of mathematics, 
2. are sustainable to order curricular concepts vertically, 
3. are ideas for the question, what is mathematics, for communicating about mathematics 
4. allows mathematical education to be more flexible and clear 
5. have a corresponding linguistic or activity-based archetype in language and thinking.” 

Therefore it is not remarkable that the concept of modelling can be found in a lot of different curricula all over 
the world. For example in the Austrian curriculum for mathematics in grammar-schools you can find a lot of 
quotations for it [7]. 

By interpreting those quotations in the curriculum modelling can be seen as a process-related competence. That 
means 

 translating the area or the situation to be modelled in mathematical ideas, structures and relations 
 working in a given or constructed mathematical model 
 interpreting and testing results 

Those process-related competencies have been described by many people, e.g. Pollak [10], Müller and Wittmann 
[8], Schupp [13], Blum [1]. Regarding to all the developments in modelling Blum and Leiß [2] has designed a 
modelling cycle which is designed by a more cognitive point of view. 

2 Problems in realm of students’ experiences in mathematics education 
Problems of real-life, like problems in environment, sports or traffic, are often a starting point for calculations 
and applications of mathematics. But before using mathematics in such fields it is necessary that the problem is 
well understood. This asks for a lot of time and dedication, because it is necessary to translate the problem from 
reality to mathematics and back to reality. Therefore models are used as an adequate description of the given 
situation. Modelling through problems in realm of students’ experiences means creating an image of reality 
which allows describing complex procedures in a common way. Creating such an image has to observe two 
directions as Krauthausen [4] quotes: 

 Using knowledge for developing mathematical ideas. 
 Developing knowledge about reality by its reliance on mathematics. 

If such problems are discussed in mathematics education it will be possible that students are more motivated for 
mathematics. But there are a lot of other arguments why such problems should be discussed. They 

 ... help students to understand and to cope with situations in their everyday life and in environment, 
 ... help students to achieve necessary qualifications, like translating from reality to mathematics, 

                                                 
1 Note: All translations are done by the author 
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 ... help students to get a clear and straight picture of mathematics, so that they are able to recognize that 
this subject is necessary for living, 

 ... motivate students to think about mathematics in a deep going way, so that they can recall important 
concepts even if they were taught a long time ago. 

If a teacher is concerning the listed points, then he will be able to find a lot of interesting topics which he/she is 
allowed to discuss with students. Exemplarily I want to show the motivation problems in realm of students’ 
experiences by observing an egg. 

3 The egg 
If we have a closer look at an egg, we will see that its shape is very harmonic and impressive. Considering a 
hen’s egg it is obvious that the shape of all those eggs is the same. Because of the fascinating shape of eggs I 
tried to think about a method to describe the shape of such an egg with mathematical methods. Searching the 
literature I found some material from Münger [9], Schmidt [11], Malina [6], Wieleitner [17], Loria [5], 
Timmerding [16] and Hortsch [3]. The book of Hortsch is a very interesting summary about the most important 
results of ‘egg-curves’. He also finds a new way for describing egg-curves by experimenting with known parts of 
‘egg-curves’. The modality how the authors are getting ‘egg-curves’ is very fascinating. But none of them has 
thought about a way to create a curve by using elementary mathematical methods. The way how the authors 
describe such curves are not suitable for mathematics education in schools. So I thought about a way to find such 
curves with the help of well known concepts in education. My first starting point is a quotation of Hortsch [3]: 
“The located ovals were the (astonishing) results of analytical-geometrical problems inside of circles.” The 
second point of origin are the definition of ‘egg-curves’ found by Schmidt [11] and presented in Hortsch [3]. 

3.1 Definition 1 (Schmidt [11]): 
Schmidt quotes: „An ‚egg-curve‘ can be found as the geometrical position of the base point of all perpendiculars 
to secants, cut from the intersection-points of the abscissa with the bisectrix, which divide (obtuse) angles 
between the secants and parallel lines in the intersection-points of secants with the circle circumference in 
halves. The calculated formula is r = 2 a cos²  or (x2+y2)3 = 4 a2 x4” 

In education the role of education is gaining in importance. Different systems, like computer-algebra-systems 
(CAS), dynamical-geometry-software (DGS) or spreadsheets, are used in education. With the help of technology 
it is possible to design a picture of the given definition immediately. In the first part I use a DGS because with its 
help it is possible to draw a dynamical picture of the given definition. The DGS I am using is GeoGebra. It is 
free of charge and very suitable in education because of its handling. 

First of all we construe the one point P of such an egg as it is given in the definition. 

 
Figure 1. Translating the definition of Schmidt 

to the DGS 

According to the construction instruction I have first construed a circle (center and radius arbitrarily), then a 
secant from C to A (points arbitrarily). After that I have drawn a parallel line to the x-axis through the point A (= 
intersection point secant-circle) and determined the bisecting line CAD, which is cut with the x-axis. So we get 
point S. Now we draw the perpendicular to the secant through S. The intersection point of the secant and the 
perpendicular is called P and is a point of the ‘egg-curve’. Now I activate the “Trace on” function and use the 
dynamical aspect of the construction. By moving A towards the circle the ‘egg-curve’ is drawn as Schmidt has 
described it. This can be seen in the following figure: 
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Figure 2. Egg-curve construed by DGS 

Now we have to find a way to calculate the formulas r = 2 a cos²  or (x2+y2)3 = 4 a2 x4 as mentioned above.  

Let us start with the following figure: 

 
Figure 3. Initial situation for calculating the  

equations of the egg-curve 

We know, because of the construction that the triangle CPS is right-angled. Furthermore we can recognize that 
the distance CP and PS is the same and that the triangle CAB is also rectangular, because it is situated in a 
semicircle. This can be seen in the following figure, where I have also drawn the real ‘egg-curve’ as dashed line. 

 
Figure 4. Affinity of the triangles 
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Because of the position of the points C (0, 0), A (x, y), B (2 r, 0) and the construction instruction the coordinates 
of point S and P can be calculated. Therefore only a little bit of vector analysis is necessary. The calculation can 
be done in the CAS Mathematica.  

First of all I have to define the points and the direction vector of the bisecting line w: 

 
Now I can calculate the equation of the normal form of the bisection line, cut it with the x-axis and define the 
intersection-point S. 

 
Now I can calculate the intersection point P of the secant and the perpendicular through S. 

 
Now all important parts for finding the ‘egg-curve‘ are calculated. Let us have a closer look at figure 4. It is easy 
to recognize that there are two similar triangles – triangle CPS and triangle CAB. The distance CP shall be called 
r and the radius of the circle shall be called a. The distance CB has now the length 2 a. The other two distances 
which are needed CA and CB has the length . Now we can apply the similarity of the triangles: 
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Transforming this equation, delivers:  

 

Now I use the characteristic of the right-angled triangle CAB and call the angle ACB . For the cosine of this 
angle I get: 

 

By inserting this connection in the equation above I get: 

 

Shortening this equation, delivers: 

 

By substituting r and cos  it is possible to get the implicit Cartesian form, mentioned in the definition: 

 

 

 

respectively 

 

As we have seen the ‘egg-curve’ has been modelled by elementary mathematical methods. Through using 
technology teachers and students get the chance to explore such calculations by using the pivotal of modelling. 
Through such calculations the necessity of polar-coordinates can get obvious. 

3.2 Definition 2 (Münger [9]): 
Another construction instruction is formulated by Münger [9]. He quotes:  

„Given is a circle with radius a and a point C on the circumference. CP1 is an arbitrarily position vector, P1Q1 the 
perpendicular to the x-axis, Q1P the perpendicular to the vector. While rotating the position vector around C 
point P is describing an egg-curve. The equation of this curve is r = a cos²  in Cartesian form (x2+y2) 3 = a2 x4.“ 

As it is given in the construction instruction a circle (radius arbitrarily) and a point C on the circumference of the 
circle is constructed. Then we construe an arbitrarily point P1 on the circumference of the circle. The 
perpendicular to the x-axis is construed through P1 which is cut with the x-axis and delivers Q1. After that the 
perpendicular to the secant CP1 through Q1 is construed. All these facts can be seen in the following picture: 
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Figure 5. Translating the definition of Münger 

to the DGS 

If the point P1 is moved toward the circle, P will move along the ‘egg-curve’. It will be easier to see if the “Trace 
on” option is activated. 

 
Figure 6. Egg-curve construed by DGS 

The formula given by Münger can be found in a similar way as the other formula was found. The most important 
fact which has to be seen here is that in this picture two rectangular triangles CPQ1 and CP1A exist. Those 
triangles are similar. 
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Figure 7. Affinity of the triangles 

The coordinates of the points can be found mentally – without any calculation: 

C (0, 0), P1 (x, y), A (2 a, 0), Q1 (x, 0) 

If the distance CP is called r, then the coordinates of P will not be used. Otherwise they can be calculated 
analytically. For the sake of completeness I write down the coordinates of P: 

P  

If we use the similarity of the both triangles, then the following equation will be obvious: 

 

Through elementary transformation, because of the mathematical fact  in the triangle CP1A and 

substitution of the term  by 2 a cos  the following equation is calculated: 

2 a x cos  = 2 a r 

The result is:  

r = x cos  

Because of the fact (assumption in the calculation) that the x is part of our circle – it is the x-coordinate of P1 – x 
can be substituted by x = a cos , with a as the radius of the starting circle. So the formula of Münger is found 
with polar-coordinates: 

r = a cos²  

If the implicit cartesian form should be stated, another substitution has to be done. The result is: 

(x2+y2) 3 = a2 x4 

4 Epilogue 
Looking at objects of daily life through the lense of mathematics can show interesting and motivating 
(mathematical) results. The grade of complexity is not an essential attribute for discussing objects of realm of 
students’ experiences. It is necessary to show students that mathematics allocates methods and instruments to 
analyse objects in daily life. For this reason Austrian and German mathematics educators founded the ISTRON 
group in 1990. This group has the aim to look at problems in daily life and to show teachers how they can 
improve their education by implementing such examples. Lots of materials can be found in volume 0–11. A 
more detailed look at mathematical aspects of an egg can be found in the article of Siller, Maaß, Fuchs [15] 
which is accepted for the next volume of ISTRON.  
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All in all it is necessary that adequate problems are shown for education. Problems which are already known in 
research should be adapted respectively constructed for education. The fields for educational research in this area 
is should be expanded and strengthened. 
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