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Abstract. Driving is an incremental forming method. It has been used for centuries, but been re-
searched very little in scientific fields. The driving is carried out by means of so called "Kraftformer"
machines using universal tool sets. It can create almost any 2D or 3D geometries of metal sheets. But
there exist very high interactions between the metal sheet and the tool in the driving process, where the
vertical force from the tool is transformed in the horizontal directions and the metal sheet is clamped by
the tool then to be stretched or shrinked. In the modelling, the geometry of the L-shaped metal sheets
is approximated in the two combined flanks with constraints on the common edge. The employed ma-
terial models are elastic-ideal plastic and elastic-real hardening. The force transformation is clarified
in the tool model. Furthermore, there are three phases in the model of the forming: mixed elastic and
plastic deformations; pure plastic deformation; springback and inverse bending. In the evaluation, the
simulation and experiment results match to each other very well, so that the total model is suitable for
model based applications.

1 Introduction
The Driving process nowadays is based on an incremental method for sheet metal forming with significantly
reduced investment expenses. This technique which has not yet had much relevance in scientific considerations is
one of the oldest metal forming processes available and has been used for centuries.

The driving process today solely requires a small low cost press (so called "kraftformer" machines) (see Fig. 1) and
is able to shape metal sheets in 2D or 3D geometry using universal tool sets [6]. Due to the very high proportion of
manual work in the production process, driving is only employed nowadays for the manufacture of niche products,
e.g. for repairing and maintenance purposes in the aerospace industry, for panelling parts of railway cars, or for
the restoration of vintage car bodies, i.e. for single parts and small quantities, where cost effectiveness is a minor
issue, or where other forming processes fail.

Figure 1: Driving machine, so called "kraftformer" (left); Stretching and the structure of its used tools (right).

The Driving has a highly interactive process, in which material properties are changed by work hardening and
where contact conditions are varied with every stroke. After a multitude of strokes, the shapes of the metal sheets
suffer from accumulated inaccuracies. But in controlling or automating this forming process, an analytical model
should be given to yield the corresponding parameters. Furthermore, such a model brings more knowledge of the
internal forming procedures of the metal sheets, while FE model has not the ability to calculate the parameters due
to its natural limitations and to be used in real-time control system. Hence, the driving process will be analytically
modelled in this paper, although the high process interactions are mentioned in the above.
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2 Modelling
Using the driving machine, the L-shaped metal sheets can be stretched or shrinked in processes by means of
hammering strokes on the metal sheets. During every forming stroke, the tools clamp the sheet and transform the
vertical stroke into horizontal movement and by that induce compressive (shrinking) or tensile (stretching) stress
into the sheet. So the sheet can be bended at different positions into a given 2D form. The forming force can be
applied manually or automatically by tuning the stroke depth, which denotes the distance between the upper and
the lower tool part. In the paper, only the stretching process will be modeled.

2.1 L-shaped Metal Sheets

2.1.1 Approximated Geo-Model

The L-shaped metal sheets were finished by an edge bending machine before the beginning of the driving process.
Such a sheet has two flanks and a transition zone between the both (see Fig. 2). In the forming process, the material
of the upper flank is extended in the plain at the stroke position but in different rates. The nearer the stroke points
are located at the transition zone, the less the material is elongated. The lower flank is orthogonal to the upper
flank and is therefore only bended through the forming force of the upper flank. In order to make the analytical
modelling of the stretching process easy, a Geo-Model is used to approximate the real sheet as the transitions zone
is ignored and is replaced with the boundary conditions. There shows a shared fiber Gf jointing the two flanks. It
is assumed that the transition zone of a L-shaped metal sheet can be hold very small during the edge bending.

2.1.2 Strains

In stretching process, the material of the πB-flank is only extended, while the πH -flank is compressed and tensioned
around the common fiber respectively. Due to the boundary condition on the shared fiber, it yields a common
bending angle θ (see Fig. 2). Actually, the length of the fiber l0 changes only very small, so that the fiber is
regarded as constantly long during the total process. The material of the fibers parallel to Gf in both flanks is
elongated more or less alongside the fiber direction. Then the strains are formulated as defined in small strain in
the following:

ε1B =
∫ lB

l0

dl
l

= ln
(

lB
l0

)
. (1)

With the fiber length lB = θ · (ρ + yB) at the position y = yB and

ls = θ ·ρ (2)

, the strain ε1B is gained at the position yB:

ε1B = ln(1+
yB
ρ

). (3)

Due to the incremental forming, only a small strain can be gained at every increment, so that the strain can be
linearized

ε1B =
yB
ρ

. (4)

Similarily, the strain ε1H in the πH -flank is yH/ρ . Certainly, the strains can be calculated in large strain that is
suitable for the large deformations [2]. But for this incremental stretching process, the sheet is formed in a small
deformation at a forming step and can also achieve a certain large deformation after many forming steps.
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Figure 2: L-shaped metal sheet and its approximated Geo-model.

2221

Proceedings MATHMOD 09 Vienna - Full Papers CD Volume



+

elsatic-ideal plastic

elsatic-real hardening

quantized elsatic-real hardening

Figure 3: Flow curve on flat drawing (left); Quantized elastic-ideal plastic material model (right).

2.1.3 Material Models

In the stretching process, the deformations can be measured with the known sensors [5]. The first principal strain ε1
is then calculated with the linearized strains. But the stresses can be only determined with the help of the material
model in the forming procedures that characterizes the behaviour of the material under external forces in elastic
and also plastic deformations. To gain the σ1 − ε1 relation firstly in the elastic domain, the stress-strain states

πB : ε1; ε2; ε3;
σ1; σ2 = 0; σ3 = 0.

πH : ε1; ε2 = 0; ε3;
σ1; σ2; σ3 = 0.

(5)

are given according to the external foreces. With respect to the hook’s law, the modulus of elasticity is E/(1−ν2)
for the πH -flank (ν is the poisson’s number) and E for the πB-flank. The stress σ1 increases in proportion to the
strain ε1, but only till the elastic limit. Hereby, the limit is defined at the 0.2% plastic strain because of no distinct
yield points on the stress-strain diagram. If the stress is beyond this limit, the flanks lie in plastic deformations.
To describe it, the flow curve is used, from which not only the local state values such as stresses and strains
but also the process values e.g. forces, energies, powers can be evaluated. The flow curve is plotted through
the standardized plane drawing. It shows strain-hardening deformations in the reality. Alltogether, the elastic-real
hardening model will be used for calculating the state values in the total stretching process. Furthermore, due to the
incremental forming procedures, the elastic-ideal plastic model will be adopted during every forming increment
to make the calculations simple. That is to say, the used elastic-real hardening model is quantized through the
forming increments (see Fig. 3(right)).

2.2 Tools

The tool has two parts that press the sheet together so as to transform the vertical force in the horizontal direction.
Each part has two movable sections that can be pushed horizontally to the sides by the transition elements of the
tool parts.

2.2.1 Stroke Movement

The needed forces to form the metal sheets are brought through the released strokes. The continuous movement
Hst of the upper tool is characterized by a sinusoidal function:

Hst = Hr +Ast · sinωt, (6)

where Hr is the reference position that can be adjusted by the operating panel or via a external control program,
Ast is the amplitude of the movement around the reference position and ω is the circle frequence of the movement.
During the continuous movement of the upper tool, the strokes hitting the metal sheets can be released by an
eccentric tappet. The rate of a stroke is defined as the stroke depth h that indicates the further movement from the
lowest point of the continuous movement deep into the metal sheets. A stroke movement is still sinusoidal but with
a different amplitude:

Hst = Hr +(Ast +h) · sinωt. (7)

The stroke depth can be tuned in the same way as the reference position. It should be denoted that the stroke
movement happens only in the half period of the continous movement.
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2.2.2 Load Transmission

The vertical forces Fv corresponding to a reference position and a stroke depth can be measured through a load
cell. The force response rises and falls with the moving of the tool (see Fig. 4 (left)). The maxima of the forces
referring to an identical reference position and however different stroke depths appear in a linear relation to the
stroke depth (see Fig.4 (center)).

−1.5 −1 −0.5 0 0.5 1 1.5 2
0

20

40

60

80

100

120

140

160

180

Stroke Depth h(mm)

Fo
rc

e 
f E

(k
N

)

Fv

Fn Fh

Fr

Ft

Transfer Element

Tool Part

Metal Sheet

Figure 4: Vertical force response (left); Force progression on stroke depthes (center); Force transfering (right).

Because the final position at a stroke movement is equal to Hr +Ast +h, the identical maxima of the forces can be
obtained at the different reference position but with the congruent stroke depth, althrough the force progressions
could be different along the time axis. The maxima of the forces will be used to reconstruct the force progression
for the load transmission into the metal sheet. The vertical force Fv can be transfered via the transfer elements into
the horizontal direction while the half tools move itself to the sides (see Fig. 4 (right)). The balance of the forces
gives the following relations:

Fv = Fn;Ft = Fn/ tan(α), (8)

in which α is the angle of the transfer element according to the horizontal direction. The transfer force Ft increases
with decreasing the angle α when the normal force Fn stays unchanged. However, the horizontal force Fh on the
metal sheet depends on the relative movement between the tools and the sheet. Hereby, the friction factor plays the
role and will be explained in the next section.

2.2.3 Friction Factor

Actually, the force transfers in the horizontal direction are completed through the frictions between the tools and
the sheet. Thereto, it is necessary to distinguish the frictions on sliding and adhering. With respect to the coulomb’s
law, the frictional force can be given as follows:

Fr = μr ·Fn; Fh = Fr, (9)

in which μr is the friction coefficient. But when the transfer force Ft is less than Fr, the tools adhere on the sheet
and move with it together. As the transfer force Ft = Fn/tanα is known, the friction coefficient μr and the transfer
coefficient μt = 1/tan(α) have the following relations:⎧⎨

⎩
μr
μt

< 1 on sliding

μr
μt

≥ 1 on adhering
(10)

At this point, the friction factor μ = μ(μr,μt , tr) can be defined to describe the frictions during the transfer moving.
However, it is not possible to know when the sliding finishes and the adhering begins, how the angle α changes.
In oder to determine the friction factor, the FEM-simulation is used too identify the transfer coefficient, friction
coefficient and the time range. From the results of the FEM-simulations [4], the friction coefficient was found out
in the range [0.36,0.38]. The tools slide then through the sheet without no adhering, because μr/μt ≥ 1 can not be
reached in the permitted range [pi/6, pi/3] of the angle α . In the reality, the friction factor changes stochastically
after every stroke and therefore includes a random function in the modelling. In addition, the metal sheets have a
small friction coefficient at the beginning.

2.3 Forming Procedures

In stretching processes, the strokes are released consecutively at different stroke positions with different stroke
depths. During one stroke, the upper tool moves itself to the upper surface of the sheet and the successive forming
procedure begins. There are totally three forming phases at the stroke (see Fig. 5). In the first phase, the two flanks
are formed till the flow limits, while the second phase describes the pure material flows. When the stresses lie
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again under the flow limits during unloading, the two flanks spring back but in different rates, so that the inverse
bending of one flank is driven by the other flank.
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Figure 5: Progressions of the sinusoidal stroke movement, the horizontal force and the bending angle

2.3.1 Hybrid Deformations

In this phase, the two flanks are elastically formed at first. The bending moment of the πB-flank is calculated as
follows [1]:

meB =

∫ B

0
σT dy · y =

∫ B

0
Ty2/ρdy =

ET B3

3ρ
. (11)

Certainly, the plastic deformations appear first of all on the boundaries, that is to say, the stress σ1B reaches the
flow limit SB at y = B, which yields the elastic curvature limit and the elastic moment limit(

1
ρ

)
eB

=
S

BE
, (12)

mlB =
B2T SB

3
. (13)

Furthermore, the hybrid (or elastic-plastic) deformations happen in the flanks with the distributions of the stresses
(see Fig. 6).
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Figure 6: Distributions of the stresses of the two flanks.

The ratio between the elastic and the plastic deformation is defined with the curvature rB = (1/ρ)eB/(1/ρ) and
therefore the bending moment is newly formulated in the following:

mepB =
∫ ye

0
σ1BT dy · y+

∫ B

ye
SBT dy · y =

1
6

SBT B2(3− r2
B), (14)

where ye = ρSB/E = B · rB.

Altogether, the moments for the πH -flank can be calculated in the similar way and finally it yields the following
moment vectors:

me =

(
meB

EHT 3

12ρ

)
, mep =

(
mepB

1
12 ST 2H(3−m2

H)

)
, ml =

( mlB
BT 2SH

6

)
(15)

The external moment mw = lh ·Fh (lh =
∫

ydA/
∫

dA)) balances the combined moments of the two flanks during
different deformation states:

• Step 1: mw = iT ·me – both flanks in pure elastic deformations;
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• Step 2: mw = iTe ·me + iTp ·mep – πB-flank in hybrid deformation and πH -flank still in elastic deformation;

• Step 3: mw = iT ·mep – both flanks in hybrid deformations,

in which i = (11)T , ie = (01)T , ip = (10)T .

After step 2, the bending angle

θ =
2SHl0
ET

(16)

is reached. At the end of the step 3, if the horizontal force beyonds the force limit

Ff =
1
4
(2B2SB +HT SH)/lh, (17)

the two flanks are going to the pure material flows, which will be clarified in the next section.

2.3.2 Material Flows
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Figure 7: Strain-stress state on the sheet during the material flow.

Actually, the bending angle is determined by the boundary elongation of the πB-flank, so that the deformation at
yB = B can be seen as uniaxial. The πH -flank is formed passively and its deformation can be ignored in this phase
because of its small forming widerstand. To describe the forming states, the deformation state variale e = (ε1B ˙ε1B)T

is defined and it has the following dynamics:

ė =

(
0 1
0 0

)
e; (18)

θ = (
l0
B

0) · e|y=B, (19)

in which the state variable e is dependent on a position and there is the boundary condition e|y=0 = 0. The
deformation velocity ˙ε1B is determined by the displacement velocity v1B [3] or

˙ε1B = ∂v1B/∂x. (20)

The velocity v1B depends on the horizontal velocity Vst of the tool parts:

v1B =
2Vst
Bl0

xy. (21)

The velocity Vst can be approximately resulted from the function of the stroke movement (see Eqn. ??), or

Vst =
1
2

∂Hst
∂ t

∣∣∣t=t∗0 , (22)

in which the material begins to flow at the time t∗0 . It is assumed that the velocity stays constant in the total flow
time interval. Thus, the state varialble e at the boundary y = B is given as follows:

e|y=B = (
2Vst
l0

Δt
2Vst
l0

)T . (23)

The progression of the stroke movement indicates that the upper tool contacts the upper surface of the sheet since
the time point t0 (see Fig. 5). At the time point t0, the slackness between the sheet and the tool is removed and the
lower tool does not slacken any more. Since this time point

t0 =
1
ω

arcsin
(

Ast +δh
Ast +h

)
, (24)
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the force on the sheet rises linearly to the maximum Fm and then falls off. Hereby, δh indicates the slackness
between the upper tool and the sheet and the slacked offset of the lower tool. It is formulated as follows:

Δh = ξ
H +h
Hr +h

h, (25)

where ξ is the transfer factor that describe the effect of the initial movements of the tools in vertical and horizontal
directions, in which the slackness disappers and the tools don’t slide on the surfaces any more. The reference
distance H + h is brought in the calculation because the tool moves itself from a reference position. The value H
and h can be arbitrarily chosen in the valid intervals with suitable ξ . Since the time point

t1 =
1
ω

[
π − arcsin

(
Ast +δh
Ast +h

)]
, (26)

the upper tool leaves from the surface. In the time interval [t∗0 , t∗1 ], the material flows when the horizontal force Fh
exceeds the limit Ff (Eq. ??). Hereby, the leverage lh is equal to the width of the πB-flank under the assume of the
uniaxial deformation. The flow time vector is calculated as follows:

t∗ =

(
t∗0
t∗1

)
=

(
1−η η
η 1−η

)
· t, (27)

where η =
Ff

2μFm
and t = (t0 t1)T . It should be denoted that the necking and thinning are not regarded.

2.3.3 Springback and Reverse Bending

If the force Fh falls below Ff , the bended L-sheet springs back. To calculate the springback angle θz, the similarity
law of triangles is used on the flow curve and

θz =
SBL
EB

. (28)

Actually, the flank πH has also a springback angle that ist different from θz, so that the flank πH should be bended
back to find a new forming balance. Because the springback angles are even very small, the reverse bending is
ignored here.

3 Evaluation
To evaluate the model, the L-shaped metal sheets are standardized with the following parameters

B = 35mm, H = 50mm, T = 1mm, l0 = 9mm, E = 210kN/mm2, ν = 0.3.

The system and model parameters are

Hr = 23.5mm, Ast = 3.9mm, ω = 2π/0.138kHz, h ∈ [0.5mm, 2.0mm], ξ = 0.78

that describe the stroke movements. The friction factor μ is formulated with a random function

μ =

{
0.05 at the f irst stroke
0.36+0.2 ·Rand() since the second stroke (29)

to simulate the stochastic changing of the surface roughness one after another stroke.

Figure 8: Simulation and Experiment result on the stroke depth h = 1.2mm (left); The average absolute errors on stroke
depths (center); Two identical trials but given the different results (right).
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The experiments are carried out using the standardized stahl sheets, for each of which ten strokes are released with
an identical stroke depth. The Fig. 8 shows the incremental bending angle on the simulation and the experiment
with the stroke depth h = 1.2mm. Firstly, the strain-hardening procedure can be identified. Because of the stochas-
tic changing of the surface roughness, exact matching between the both can not be reached. Hereby, the average
absolute error

eavg =
1
N

ΣN
i=1|θ

sim
i −θ exp

i | (30)

is employed to valuate the modelling. As seen in the Fig. 8, the most errors lie under 0.2 with the stroke depth
h from 0.8mm to 2.0mm. Actually, it gives different results even on two identical trials (see Fig. 8). The model
can not give good results any more on the stroke depths h = 0.7mm,0.6mm and 0.5mm. On the one hand, the
force response along the time axis becomes more highly nonlinear because of the strongly reducing of the vertical
forces, so that the flow time interval [t∗0 t∗1 ] can not be estimated very well. On the other hand, the forming of the
πH -flank has more effects that on the other stroke depths.

4 Summary and Outlook
The stretching (or driving) process has high interactions between tools and materialien. To model this process, the
Geo-model was established to approximate the real geometry of the sheets. From the Geo-model, the strains in the
two flanks were formulated and linearized. The stresses were calculated with respect to the quantized elastic-real
hardening model. The tools bring the forces into the sheets during its sinusoidal stroke movements. The vertical
load is transfered in the horizontal direction by the transfering elements. The friction factor effects the horizontal
force of the sheet very highly, so that the sheet experiences hybrid deformations, material flows and springback.
The simulation and experiment results can not match each other exactly. But the average absolute error eavg can be
acceptable on the most stroke depths according to the stochastic changing of the surface roughness.

In the future, a complexer Geo-model can be used, so that the deformation of the sinuous transition zone will be
not ignored. The strain must not be linearized and the real material model will be used also during each forming
increment. If the response of the vertical force and the deformation of the sheet can be simultaneously measured,
the assume of the uniaxial material flow in the πH -flank must be involved to make the model also on the small
stroke depths more precisely. Altogether, this model can be as basic principles for the modelling of the shrinking
processes and can be used in the real-time control applications.
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