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Abstract. This paper presents a numerical approach to design a nonlinear control law for nonlinear
systems by extending the results for controller design using SOS-programming (see e.g. [4]) to systems
with input saturation. In addition, a Lyapunov function is constructed which is used to prove the
stability and to estimate the region of attraction of the equilibrium point of the nonlinear closed loop
system. Considering the input saturation yields additional conditions for the SOS-program. A second
modification is the extension to rational control laws which can be integrated in the SOS-programming
method by using a polynomial nominator and denominator. In the end, two different SOS-programs for
the construction of a control law and a Lyapunov function of a polynomial system with input saturation
are derived and an estimation of the region of attraction of the stabilized equilibrium point is computed.
An academic example demonstrates the presented approach.

1 Introduction
The stabilization of an equilibrium point of a nonlinear system is an important problem in control theory. The input
saturation of a system has significant influence on the stabilization task, thus it is an advantage to consider the input
saturation systematically within the design procedure. Furthermore, a proof of stability of the equilibrium of the
nonlinear system with input saturation and an estimation of the region of attraction are the interesting properties in
the design approach.
Although, the Lyapunov theory is the instrument to give the answer to the stability question (see e.g. [5]), there
is no easy way of constructing an appropriate Lyapunov function. In the last decade, beginning with the work of
Parrilo [6], a numerical approach to find a Lyapunov function was presented in different publications, e.g. [4] and
[9], using the so called SOS-programming (SOS - sum of square). It is shown in [6] that every SOS-program can be
transfered in a semidefinite program which can be solved efficiently by a numerical software package. Furthermore,
the region of attraction of the considered equilibrium point can be estimated using SOS-programming. The basic
problem finding a suitable Lyapunov function is to test nonlinear functions for positive definiteness on a certain
region in state space. The advantage of the SOS-programming technique is to solve this problem for polynomial
functions with a restriction. Actually the polynomial is checked if a sum of square representation exists which is
naturally positive semidefinite, for details see e.g. [6] and [8]. Furthermore, the SOS-programming technique can
construct Lyapunov functions of degree larger than 2 systematically which may result in better estimates of the
region of attraction when compared to quadratic Lyapunov functions.
The Lyapunov theory can also be used for the design of stabilizing control laws which yields the computation of
an appropriate control law and a suitable Lyapunov function which can be used for an estimation of the region of
attraction of the equilibrium point of the closed loop system. The SOS-programming approach for the stabilization
of nonlinear systems in [4] is extended to systems with input saturation which yields two additional conditions in
the SOS-programs for the determination of the control law and the Lyapunov function. Therefore, the degrees of
freedom contained in the nonlinear control law are used in the SOS-programs to construct a suitable Lyapunov
function for providing the stability and to determine an as large as possible estimation of the region of attraction
of the equilibrium point of the closed loop system. The idea of considering the input saturation for the purpose of
an estimation of the region of attraction for a given control law and Lyapunov function using SOS-programming
was used in [1]. In difference, the presented approach embeds the constraint of the input saturation in the whole
procedure and consequently leads to the construction of a control law and a Lyapunov function where both try to
adopt the shape of the exact region of attraction of the equilibrium point.
Another modification compared to [4] is the application of rational control laws which consist of polynomial
nominators and denominators. Furthermore, the denominator is chosen such that it is strictly positive in the whole
state space in order to avoid singularities in the input signal. The integration of a rational control law in the
constraints of the optimization problem yield after small rearrangements polynomial constraints which can be
solved with the SOS-programming technique.

In the next section an introduction of the problem is given. A brief overview of the SOS-programming is stated in
Section 3. In Section 4 two different algorithms for the design procedure are derived, consisting of the systematic
construction of a stabilizing control law and a suitable Lyapunov function together with an estimation of the region
of attraction of the equilibrium point. An example in Section 5 demonstrates the proposed approach.
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2 Problem formulation
For the stabilization problem consider the nonlinear system

ẋ = f (x)+ g(x)u (1)

with the state x ∈ Ω ⊆ Rn, where Ω is a domain such that 0 ∈ Ω and the input u ∈ R. In the sequel, the elements
of f and g are supposed to be from the set R[x] of multivariable polynomials in the n variables x with coefficients
in R. Furthermore, let without loss of generality x = 0 for u = 0 be an equilibrium point of (1), i.e. f (0) = 0 and
g(0) �= 0, and in addition the input of system (1) is restricted by an lower and upper constant input saturation, i.e.

ulo ≤ u ≤ uup (2)

The aim of the control design is the stabilization of the equilibrium point x = 0 with a control signal u that satisfies
(2). To this end consider the rational control law

u = −
q(x)

r0 + r(x)
, r0 > 0 (3)

with q(0) = 0 and polynomial functions in the nominator and denominator of the the control law (3), i.e.
q(x), r(x) ∈ R[x], furthermore, the denominator is supposed to be positive semidefinite, i.e. r(x) ≥ 0, ∀x ∈ Rn, in
order to avoid singularities in the control law (3). Introducing (3) into (1) yields the closed loop system

ẋ = f (x)−g(x)
q(x)

r0 + r(x)
(4)

with an equilibrium point at x = 0. The further stabilization analysis which is used in the control design, is based
on Lyapunov’s stability theorem for asymptotic stability of the equilibrium point of (4) without consideration of
the input saturation (2) (see e.g. [5]).

Theorem 1 Let x = 0 be an equilibrium point for (4) and D ⊆ Ω be a domain containing x = 0. Let V (x) : D → R
be a continuously differentiable function such that

V (x) > 0, ∀x ∈ D\ {0} and V (0) = 0 (5)

V̇ (x) =
∂V (x)

∂x

(
f (x)−g(x)

q(x)
r0 + r(x)

)
< 0, ∀x ∈ D\ {0} and V̇ (0) = 0 (6)

Then, the equilibrium point x = 0 is asymptotically stable and V (x) is a Lyapunov function of the closed loop
system (4).

As it can be seen in (5)–(6) the basic problem using Theorem 1 is to find a stabilizing control law (3), a suitable
Lyapunov function V (x) and check nonlinear functions for positive definiteness. This task can be accomplished by
using the SOS-programming technique since only rational terms enter (5)–(6) (see [4] and [6]). Furthermore, the
condition (2) must be satisfied within the whole procedure of constructing a control law and a Lyapunov function,
which yields two additional conditions

q(x)
r0 + r(x)

≤ uup (7)

q(x)
r0 + r(x)

≥ ulo (8)

concerning the control law (3). Taking these two conditions (7)–(8) into account by the construction of the control
law (3) and a Lyapunov function by using Theorem 1, asymptotic stability of the equilibrium point x = 0 of the
closed loop system (4) with input saturation (2) is ensured. The conditions (5)–(6) and (7)–(8) can be formulated
within the SOS-programming method which can be applied to solve the problem of constructing a control law
that satisfies (2) and a Lyapunov function. Furthermore, the Lyapunov function can be used for the estimation of
the region of attraction of the equilibrium point x = 0 using SOS-programming (see [4]). The advantage of the
presented control design is the stabilization of the equilibrium point by a systematic construction of a Lyapunov
function of degree larger than 2 using a numerical procedure. This may result in better estimation of the region
of attraction of the equilibrium point when compared to quadratic Lyapunov functions. In addition the rational
control law (3) represents a larger class of control laws compared to the polynomials used in [4].

3 Fundamentals of SOS-programming
3.1 SOS-polynomials

Before the implementation of the SOS-program is stated a brief introduction to the SOS-programming method
itself will help to clarify the further proceeding.
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An important subset of the polynomials R[x] are the sum of square (SOS) polynomials. The set of all SOS-
polynomials in the n variables x is defined as

Σ[x] :=

{
s ∈ R[x]

∣∣∣∣s =
k

∑
i=1

p2
i , pi ∈ R[x], k < ∞

}
(9)

Based on the definition of SOS-polynomials in (9), it is obvious that the relation p(x) ≥ 0, ∀x ∈ Rn for a given
polynomial p(x) ∈ R[x] holds, if a sum of square representation exists, i.e. p(x) ∈ Σ[x]. The advantage of this
representation is, that there exists an efficient method to test a polynomial if it is a SOS-polynomial and, in the
end, if it is positive semidefinite. Parrilo and co-workers created a MATLAB toolbox called SOSTOOLS (see [7])
whose basic task is to check polynomials for a SOS representation.

3.2 Positivstellensatz

In order to formulate the Positivstellensatz a few definitions have to be introduced.

Definition 1 Given {g1, . . . ,gσ} ∈ R[x], the multiplicative monoid generated by the polynomials gi is the set of all
finite products of the polynomials gi, including the empty product, defined to be 1. It is denoted as M (g1, . . . ,gσ).
For completeness defineM ( /0) := 1.

Example: M (g1,g2) =
{

gk1
1 gk2

2 |k1,k2 ∈ Z+

}
Definition 2 Given

{
f1, . . . , fρ

}
∈ R[x], the cone generated by the polynomials fi is

P
(

f1, . . . , fρ
)

:=

{
s0 +

k

∑
i=1

sibi

∣∣∣si ∈ Σ[x], bi ∈M
(

f1, . . . , fρ
)}

(10)

For completeness note that Pn( /0) := Σ[x].

Example:
P ( f1, f2) = {s1 + s2 f1 + s3 f2 + s4 f1 f2 |s1, . . . ,s4 ∈ Σ[x]} (11)

It is essential, that the product s f 2 of a polynomial f ∈ R[x] and a SOS-polynomial s ∈ Σ[x] is a SOS-polynomial,
i.e. s f 2 ∈ Σ[x], thus every cone can be written as a sum of 2ρ terms. This means for the example (11), e.g. the term
s f 2

1 f2 is contained in s3 f2.

Definition 3 Given {h1, . . . ,hτ} ∈ R[x], the ideal generated by the polynomials hi is

I (h1, . . . ,hτ) :=

{
τ

∑
k=1

hk pk

∣∣∣pk ∈ R[x]

}
(12)

For completeness note that I ( /0) := 0.

With these definitions the following theorem taken from [2] can be stated.

Theorem 2 (Positivstellensatz) Given polynomials
{

f1, . . . , fρ
}

, {g1, . . . ,gσ} and {h1, . . . ,hτ} in R[x] the follow-
ing statements are equivalent:

1. The set ⎧⎨⎩x ∈ Rn

∣∣∣∣∣∣
f1(x) ≥ 0, . . . , fρ(x) ≥ 0,
g1(x) �= 0, . . . ,gσ(x) �= 0,
h1(x) = 0, . . . ,hτ(x) = 0

⎫⎬⎭ (13)

is empty.
2. There exist polynomials f ∈ P ( f1, . . . , fρ), g ∈M (g1, . . . ,gσ) and h ∈ I (h1, . . . ,hτ) such that

f (x)+ g2(x)+ h(x) = 0 (14)

By using Theorem 2 in the following section, the SOS-program for the stabilization and the estimation of the
region of attraction can be derived.

4 Stabilization of nonlinear systems with input saturation
In order to obtain a systematic construction of a control law and a Lyapunov function, Theorem 1 and the restriction
of the input saturation (7)–(8) are implemented in a SOS-program. The presented approach is an extension of the
control design in [4] where two different algorithms are shown, thus two different SOS-programs are derived in
the next subsections.
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4.1 Optimization of the upper bound

Construction of a Control Law and a Lyapunov Function The first algorithm is following the method of the
so-called "expanding D algorithm" in [4]. First of all a polynomial description of the domain D is defined by

D := {x ∈ Rn |p(x) ≤ β} (15)

with a positive definite polynomial p(x) > 0, ∀x ∈ Rn \ {0}, and β ≥ 0 to ensure that D is connected and contains
the equilibrium point x = 0. To provide the stability of the origin the conditions (5)–(6) of Theorem 1 and the
conditions (7)–(8) must be met within the domain D, which read

D\ {0} ⊆ {x ∈ Rn |V (x) > 0} (16)

D\ {0} ⊆
{

x ∈ Rn
∣∣∣∣∂V (x)

∂x

(
f (x)−g(x)

q(x)
r0 + r(x)

)
< 0

}
(17)

D ⊆

{
x ∈ Rn

∣∣∣∣ q(x)
r0 + r(x)

≤ uup

}
(18)

D ⊆

{
x ∈ Rn

∣∣∣∣ q(x)
r0 + r(x)

≥ ulo

}
(19)

As already mentioned in Section 3, only polynomial inequalities can be handled in a SOS-program, thus conditions
(17)–(19) have to be reformulated. Therefore a little restriction for the denominator polynomial r(x) has to be
made. In order to avoid singularities in the control law (3) the denominator polynomial r(x) shall be a SOS-
polynomial (i.e. r(x) ∈ Σ[x]), thus it is positive semi definite (i.e. r(x) ≥ 0). Consequently, the denominator
r0 + r(x) is positive definite in the whole state space because of the positive constant r0 in the denominator. In
the end, the inequalities in the three conditions (17)–(19) can be multiplied by the denominator polynomial which
yields

D\ {0} ⊆ {x ∈ Rn |V (x) > 0} (20)

D\ {0} ⊆
{

x ∈ Rn
∣∣∣∣∂V (x)

∂x
( f (x)(r0 + r(x))−g(x)q(x)) < 0

}
(21)

D ⊆ {x ∈ Rn |q(x) ≤ uup(r0 + r(x))} (22)
D ⊆ {x ∈ Rn |q(x) ≥ ulo(r0 + r(x))} (23)

The main intention of the approach is a good estimation of the region of attraction of the equilibrium point, so
the domain D fulfilling the conditions (20)–(23) must be as large as possible. In other words an optimization
problem looking for the maximum of β subject to the constraints (20)–(23) has to be solved. For using the SOS-
programming method (20)–(23) have to be reformulated to get a polynomial for each condition which has to be
checked for a SOS-representation. This can be achieved by using the Positivstellensatz (see Theorem 2), therefore
the optimization problem with the constraints (20)–(23) written as empty sets is

max β s.t. (24)
{x ∈ Rn |β− p(x)≥ 0, x �= 0, −V(x) ≥ 0} = /0 (25){
x ∈ Rn

∣∣∣∣β− p(x)≥ 0, x �= 0,
∂V (x)

∂x
( f (x)(r0 + r(x))−g(x)q(x))≥ 0

}
= /0 (26){

x ∈ Rn
∣∣∣∣β− p(x)≥ 0, q(x)−uup(r0 + r(x)) ≥ 0, q(x)−uup(r0 + r(x)) �= 0

}
= /0 (27){

x ∈ Rn
∣∣∣∣β− p(x)≥ 0, −q(x)+ ulo(r0 + r(x)) ≥ 0, −q(x)+ ulo(r0 + r(x)) �= 0

}
= /0 (28)

For applying the Positivstellensatz, all inequalities have to be polynomial (see (13)), but x �= 0 in (25)–(26) is not,
so these have to be replaced by positive definite polynomials li(x) > 0, ∀x ∈ Rn \ {0} and i = 1,2, since

x �= 0 ⇐⇒ li(x) �= 0 (29)

This leads to the optimization problem

max β s.t. (30)

s1 +(β− p)s2 −Vs3 −V (β− p)s4 + l2k1
1 = 0 (31)

s5 +(β− p)s6 +
∂V
∂x

( f (r0 + r)−gq)s7 +
∂V
∂x

( f (r0 + r)−gq)(β− p)s8 + l2k2
2 = 0 (32)

s9 +(β− p)s10 +(q−uup(r0 + r))s11 +(q−uup(r0 + r))(β− p)s12 +(q−uup(r0 + r))2k3 = 0 (33)

s13 +(β− p)s14 +(−q + ulo(r0 + r))s15 +(−q + ulo(r0 + r))(β− p)s16 +(−q + ulo(r0 + r))2k4 = 0 (34)
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with s1, . . . ,s16 ∈ Σ[x] and k1, . . . ,k4 ∈ Z+, by using Theorem 2. For instance, the equation (31) results from (25)
by setting f1 = β− p and f2 = −V so that f in (14) is given by (11). Furthermore, (29) implies g = lk1

1 (see (13))
so that the Positivstellensatz leads to s1 + s2 f1 + s3 f2 + s4 f1 f2 + g2 = 0 which gives (31).
One problem in solving the optimization task (30)–(34) by using SOSTOOLS is the appearance of nonlinear
terms of the unknown polynomials q and r in (33)–(34), because only affine linear unknowns can be handled. To
circumvent this problem the exponents are set to ki = 1, ∀i = 3,4, and the SOS-polynomials s9, s10, s13 and s14
are set to zero, thus (q− uup(r0 + r)) in (33) and (−q + ulo(r0 + r)) in (34) can be factored out. As suggested
in [4] to keep the degree of the optimization problem low, one chooses li ∈ Σ[x] and s1, . . . ,s4 is replaced by
s1l1, . . . ,s4l1, as well as s5, . . . ,s8 with s5l2, . . . ,s8l2, furthermore the exponents of li are set to ki = 1, ∀i = 1,2.
Afterwards, in the conditions (31)–(32) the polynomial li, ∀i = 1,2, can be factored out. By solving the result for
the SOS-polynomials s1, s5, s11 and s15 the new optimization problem 1

max β s.t. (35)
−(β− p)s2 +Vs3 +V (β− p)s4 − l1 ∈ Σ[x] (36)

−(β− p)s6 −
∂V
∂x

( f (r0 + r)−gq)s7 −
∂V
∂x

( f (r0 + r)−gq)(β− p)s8 − l2 ∈ Σ[x] (37)

−(β− p)s12 − (q−uup(r0 + r)) ∈ Σ[x] (38)
−(β− p)s16 − (−q + ulo(r0 + r)) ∈ Σ[x] (39)

is obtained. In the end, the constraints (36)–(39) of the optimization problem are described by polynomials which
have to be SOS-polynomials. This task can be solved by using a bisection algorithm for searching the upper
bound βmax. The toolbox SOSTOOLS can be used to check the constraints (36)–(39) by looking for polynomials
V, q ∈ R[x] and r, si ∈ Σ[x] such that (36)–(39) are fulfilled. As already mentioned, SOSTOOLS can only solve
such problems if the unknown polynomials V , q, r and si appear affine linear. But in the constraints (36)–(37) they
appear bilinear, e.g. V s4, and trilinear, e.g. ∂V

∂x ( f (r0 + r)−gq)s7. The problem of bi-/trilinearity is solved by an
iterative procedure by the following five steps:

1. Step: V , q and r are given and β1 (solution for β in Step 1) and si of (36)–(39) are computed by using a bisection.
2. Step: V , s7 and s8 are given and β2 (solution for β in Step 2), q, r, s2, s6, s12 and s16 in (36)–(39) are computed

by using a bisection.
3. Step: V , q and r are given and β3 (solution for β in Step 3) and si of (36)–(39) are computed by using a bisection.

(This is a rerun of Step 1 for new q and r)
4. Step: q, r, s3, s4, s7 and s8 are given and β4 (solution for β in Step 4), V , s2, s6, s12 and s16 in (36)–(39) are

computed by using a bisection.
5. Step: If the difference of the current and the last value of βmax,4 is greater than a chosen tolerance, i.e.

βmax,4,cur − βmax,4,old > tol, go back to Step 1 by using the current functions of the control law q and
r and the Lyapunov function V . Otherwise, i.e. βmax,4,cur −βmax,4,old < tol, stop the iteration and βmax,4
is the solution of the optimization task (35)–(39).

Applying these steps to the optimization problem the unknown polynomials in (36)–(39) appear linear in each step,
thus the SOS-programming method can be used. A slight difference to the algorithm in [4] is the additional Step 3
which is a rerun of Step 1 for the new control law q and r computed in Step 2. This additional step improves the
solvability of the optimization problem (35)–(39) tremendously, because adequate SOS-polynomials s7 and s8 can
be computed which have to be fixed in Step 4.
The control law functions q and r for the initialization of the algorithm are a linear state feedback for the lineariza-
tion of the system (1), e.g. via eigenvalue assignment. The function V for the initialization of the algorithm is the
quadratic Lyapunov function of the linearized closed loop system using the initializing linear state feedback. This
procedure yields good initial functions and can easily be evaluated. In general no result is known how to choose
the degrees of V , q, r and the SOS-polynomials si to obtain a solution of the optimization problem. However, one
can derive the following restrictions

max{deg(ps2) , deg(Vs3)} ≥ max{deg(V ps4) , deg(l1)} (40)

deg(ps6) ≥ max
{

deg
(

∂V
∂x

( f (r0 + r)−gq)s7

)
, deg

(
∂V
∂x

( f (r0 + r)−gq)ps8

)
, deg(l2)

}
(41)

deg(ps12) ≥ deg(q−uup(r0 + r)) (42)
deg(ps16) ≥ deg(−q + ulo(r0 + r)) (43)

to ensure that the highest degree in the constraints (36)–(39) is even and has a positive sign which is true for all
positive definite polynomials. In the end, a βmax is determined together with a control law consisting of q and r
(see (3)) and a Lyapunov function V (x) which proves the stability of the equilibrium point x = 0 of the closed loop
system (4) based on Theorem 1 and considering the input saturation (2). Moreover, an estimation of the region of
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attraction of the equilibrium point is the second interesting property after providing the stability itself. With the
solution βmax of the optimization problem (35)–(39) an upper bound for an estimation of the region of attraction
on the basis of the obtained result is given by the domain D in (15) in which all necessary conditions for proving
asymptotic stability and considering the input saturation (2) are fulfilled.

Estimation of the region of attraction With calculating an upper bound βmax and consequently obtaining a
domain D where the conditions of Theorem 1 and the restriction of the input saturation (2) are fulfilled the last step
of the analysis approach is to get an estimation of the region of attraction of the equilibrium point of the closed
loop system (4). To achieve this the largest level set of the Lyapunov function V (x) contained in the domain D is
the estimation of the region of attraction (see e.g. [5]). This can be formulated as an optimization task

max c s.t. (44)
{x ∈ Rn |V (x) ≤ c} ⊆ {x ∈ Rn |p(x) ≤ βmax } (45)

with the upper bound βmax and the Lyapunov function V (x) determined by solving (35)–(39). To solve this opti-
mization problem (44)–(45) by using a SOS-program a reformulation is necessary. Therefore, the constraint (45)
has to be formulated as an empty set, which leads to the optimization problem

max c s.t. (46)
{x ∈ Rn |c−V(x) ≥ 0, p(x)−βmax ≥ 0, p(x)−βmax �= 0} = /0 (47)

Applying Theorem 2 to (47) yields

max c s.t. (48)

sc1 +(c−V)sc2 +(p−βmax)sc3 +(c−V)(p−βmax) sc4 +(p−βmax)
2k = 0 (49)

with sc1, . . . ,sc4 ∈Σ[x] and k∈Z+. To simplify the problem set k = 1 and solve for sc1 ∈Σ[x] giving the optimization
problem

max c s.t. (50)

− (c−V)sc2 − (p−βmax)sc3 − (c−V) (p−βmax) sc4 − (p−βmax)
2 ∈ Σ[x] (51)

which can be solved with a bisection of the parameter c by checking the constraint (51) with SOSTOOLS in each
step. This optimization problem (50)–(51) is easier to solve because only the SOS-polynomials sc2, sc3 and sc4 are
unknown, thus not iteration is necessary. Again the degrees of the SOS-polynomials have to be chosen which is
not an easy task, but there is the restriction

max{deg(Vsc2) , deg(V psc4)} ≥ max
{

deg(psc3) , deg
(

p2)} (52)

which has to be met to ensure a solution of the constraint (51) exists. In the end, the domain {x ∈ Rn |V (x) ≤ cmax },
with cmax denoting the solution of (50)–(51), describes the estimation of the region of attraction of the equilibrium
point x = 0 of the closed loop system (4) with considering the input saturation (2).

4.2 Optimization of the lower bound

The second algorithm is an extension of the so-called "expanding interior algorithm" in [4]. The basic idea of
this procedure is to optimize a domain containing the equilibrium point which lies entirely within the region of
attraction. Thus the estimation of the region of attraction of the equilibrium point enlarges as the optimization
domain is maximized. First of all a polynomial description of the optimization domain has to be defined by

P := {x ∈ Rn |p(x) ≤ β} (53)

with a positive definite polynomial p(x) > 0, ∀x ∈ Rn \ {0}, and β ≥ 0 to ensure that P is connected and contains
the equilibrium point x = 0. Different from the optimization of the upper bound the largest level set of the unknown
Lyapunov function is fixed so the estimation of the region of attraction following this method is given by

D := {x ∈ Rn |V (x) ≤ 1} (54)

To provide the stability of the origin the conditions (5)–(6) of Theorem 1 and the conditions (7)–(8) must be met
on the estimation (54) of the region of attraction of the equilibrium point and the optimization domain P (see (53))
must lie within D, which yields

Rn \ {0} = {x ∈ Rn |V (x) > 0} (55)
P ⊆ {x ∈ Rn |V (x) < 1} (56)

D\ {0} ⊆
{

x ∈ Rn
∣∣∣∣∂V (x)

∂x
( f (x)(r0 + r(x))−g(x)q(x)) < 0

}
(57)

D ⊆ {x ∈ Rn |q(x) ≤ uup (r0 + r(x))} (58)
D ⊆ {x ∈ Rn |q(x) ≥ ulo (r0 + r(x))} (59)
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As already mentioned in the optimization of the upper bound procedure, all unknown functions in (55)–(59) have
to be polynomial, except the denominator of the control law r(x) (see (3)) has to be a SOS-polynomial to avoid
singularities in the input signal. The condition of a positive definite Lyapunov function in the whole state space
(see (55)) is not really a stronger restriction compared to (16) because it turned out that all resulting Lyapunov
functions for any example using the upper bound method were positive definite in the whole state space.
In order to achieve a good estimation of the region of attraction of the equilibrium point, the lower bound P has to
be maximized and since D must contain P (see (56)) the estimation of the region of attraction is enlarged. Searching
for the maximum of β subject to the constraints (55)–(59) shall be solved by using the SOS-programming method,
therefore the conditions (55)–(59) have to be reformulated into polynomials which must be checked for a SOS-
representation. This can be achieved by using the Positivstellensatz (see Theorem 2), when writing the optimization
problem with the constraints (55)–(59) in the form

max β s.t. (60)
{x ∈ Rn |−V(x) ≥ 0, x �= 0} = /0 (61)
{x ∈ Rn |β− p(x)≥ 0, V (x)−1 ≥ 0, V (x)−1 �= 0} = /0 (62){
x ∈ Rn

∣∣∣∣1−V(x) ≥ 0, x �= 0,
∂V (x)

∂x
( f (x)(r0 + r(x))−g(x)q(x))≥ 0

}
= /0 (63){

x ∈ Rn
∣∣∣∣1−V(x) ≥ 0, q(x)−uup(r0 + r(x)) ≥ 0, q(x)−uup(r0 + r(x)) �= 0

}
= /0 (64){

x ∈ Rn
∣∣∣∣1−V(x) ≥ 0, −q(x)+ ulo(r0 + r(x)) ≥ 0, −q(x)+ ulo(r0 + r(x)) �= 0

}
= /0 (65)

The non-polynomial inequalities x �= 0 in (61) and (63) have to be replaced by polynomial inequalities using
the positive definite polynomials li(x) > 0, ∀x ∈ Rn \ {0} and i = 1,2 (see (29)). Using Theorem 2 leads to the
optimization problem

max β s.t. (66)

s1 −Vs2 + l2k1
1 = 0 (67)

s3 +(β− p)s4 +(V −1)s5 +(β− p)(V −1)s6 +(V −1)2k2 = 0 (68)

s7 +(1−V) s8 +
∂V
∂x

( f (r0 + r)−gq)s9 +
∂V
∂x

( f (r0 + r)−gq)(1−V)s10 + l2k3
2 = 0 (69)

s11 +(1−V) s12 +(q−uup(r0 + r))s13 +(q−uup(r0 + r)(1−V)s14 +(q−uup(r0 + r))2k4 = 0 (70)

s15 +(1−V) s16 +(−q + ulo(r0 + r))s17 +(−q + ulo(r0 + r))(1−V)s18 +(−q + ulo(r0 + r))2k5 = 0 (71)

with s1, . . . ,s18 ∈ Σ[x] and k1, . . . ,k5 ∈ Z+. Again, the problem of nonlinear terms of the unknown polynomials
q, r and in addition V in (68)–(71) must be solved by setting the exponents to ki = 1, ∀i = 2,4,5, and the SOS-
polynomials s3, s4, s10, s11, s12, s15 and s16 are set to zero, thus V − 1 in (68), (q− uup(r0 + r)) in (70) and
(−q+ulo(r0 + r)) in (71) can be factored out and the quadratic term of the Lyapunov function in (69) is removed.
To keep the degree of the optimization problem low, one chooses li ∈ Σ[x] and s1 is replaced by s1l1, s2 by l1,
as well as s7, . . . ,s9 with s7l2, . . . ,s9l2, furthermore the exponents of li are set to ki = 1, ∀i = 1,3. Afterwards,
in the conditions (67) and (69) the polynomial li, ∀i = 1,2, can be factored out. By solving the result for the
SOS-polynomials s1, s5, s7, s13 and s17 the new optimization problem 2

max β s.t. (72)
V − l1 ∈ Σ[x] (73)

−(β− p)s6 − (V −1) ∈ Σ[x] (74)

−(1−V) s8 −
∂V
∂x

( f (r0 + r)−gq)s9 − l2 ∈ Σ[x] (75)

−(1−V)s14 − (q−uup(r0 + r)) ∈ Σ[x] (76)
−(1−V) s18 − (−q + ulo(r0 + r)) ∈ Σ[x] (77)

is obtained. Finally, the polynomial constraints (73)–(77) are derived which have to be checked for a SOS represen-
tation, but once again there appear unknown polynomials bi-/trilinear in the constraints (75)–(77), e.g. (1−V)s14
or ∂V

∂x ( f (r0 + r)−gq)s9. This problem of bi-/trilinear appearance of unknown polynomials is solved in a similar
way compared to the upper bound procedure with an iterative algorithm. Remembering the iterative procedure
in Section 4.1, the basic idea is to fix one or two unknown polynomials (V,q,r and si) such that the remaining
unknowns only appear affine linear and consequently the SOS-program can be solved. By having a closer look on
the constraint (73), the only unknown polynomial is the Lyapunov function V which will be fixed for certain steps
of the iterative procedure, thus the condition (73) can be omitted in all cases where V is fixed.
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The constraint (74) represents the condition that the optimization domain P (see (53)) must lie within the esti-
mation of the region of attraction (see (56)). Hence, when V is fixed (74) always results in the same β solving
the optimization problem (72)–(77). As the only other unknown polynomial s6 in (74) only appears affine linear
it doesn’t need to be fixed but can be calculated in each step. Consequently, the constraint (74) can be omitted
in all cases of the fixed Lyapunov function V . This results in an less complex optimization problem however by
omitting (73)–(74) the optimization parameter β gets lost. By introducing the new optimization parameter α in
V ≤ α compared to V ≤ 1 (see (54)) the new optimization problem 3

max α s.t. (78)

−(α−V) s8 −
∂V
∂x

( f (r0 + r)−gq)s9 − l2 ∈ Σ[x] (79)

−(α−V) s14 − (q−uup(r0 + r)) ∈ Σ[x] (80)
−(α−V) s18 − (−q + ulo(r0 + r)) ∈ Σ[x] (81)

is derived which maximizes the estimation of the region of attraction in all iteration steps with a fixed Lyapunov
function V . The optimization problem 3 (see (78)–(81)) has the advantage that an easier choice of the initial control
law q and r and the initial Lyapunov function V arises where according to the optimization of the upper bound a
linear state feedback for the linearization of system (1) and the quadratic Lyapunov function of the linearized closed
loop system is used. Without omitting the conditions (73)–(74) the initial functions V , q and r would have to be
chosen such that the estimation of the region of attraction, i.e. V ≤ 1, lies within the domain of the input saturation
(see (58)–(59)). Using the modified optimization problem 3 for fixed V (78)–(81) the estimation of the region of
attraction, now given by V ≤ α, is determined by optimizing α such that (58)–(59) hold automatically. In other
words with the modified optimization problem 3 the estimation of the region of attraction of the equilibrium point
is computed for the initial V , q and r such that the input saturation is fulfilled instead of a difficult predefinition
of the initial V , q and r which satisfies the input saturation a priori. In the end, the iterative procedure for the
avoidance of the bi-/trilinearities of the unknown polynomials consisting of five steps is given by:

1. Step: Solving optimization problem 2 (78)–(81) with given V , q and r such that α1 (solution for α in Step 1)
and si of (79)–(81) are computed by using a bisection.

2. Step: Solving optimization problem 2 (78)–(81) with given V and s9 such that α2 (solution for α in Step 2), q,
r, s8, s14 and s18 of (79)–(81) are computed by using a bisection.

3. Step: Solving optimization problem 2 (78)–(81) with given V , q and r such that α3 (solution for α in Step 3)
and si of (79)–(81) are computed by using a bisection. (This is a rerun of Step 1 for new q and r)

4. Step: Solving optimization problem 3 (72)–(77) with given q, r, s8, s9, s14 and s18 such that β4 (solution for β
in Step 4), V and s6 in (73)–(77) are computed by using a bisection.

5. Step: If the difference of the current and the last value of βmax,4 is greater than a chosen tolerance, i.e.
βmax,4,cur − βmax,4,old > tol, go back to Step 1 by using the current functions of the control law q and
r and the Lyapunov function V . Otherwise, i.e. βmax,4,cur −βmax,4,old < tol, stop the iteration and βmax,4
is the solution of the optimization task (72)–(77).

Applying these steps to the optimization problem the unknown polynomials in (73)–(77) and (79)–(81) respectively
remain linear in each step, thus the SOS-programming method can be used. In the end, the optimization problem 2
is only used in Step 4 where a new Lyapunov function V is calculated, in Step 1 to 3 the less complex optimization
problem 3 for a fixed Lyapunov function V can be used which reduces the computational effort slightly.
In general no result is known how to choose the degrees of V , q, r and the SOS-polynomials si to obtain a solution
of the optimization problem. However, one can derive the following restrictions

deg(V ) ≥ deg(l1) (82)
deg(ps6) ≥ deg(V ) (83)

deg(Vs8) ≥ max
{

deg
(

∂V
∂x

( f (r0 + r)−gq)s9

)
, deg(l2)

}
(84)

deg(Vs14) ≥ deg(q−uup(r0 + r)) (85)
deg(Vs18) ≥ deg(−q + ulo(r0 + r)) (86)

to ensure that the conditions (73)–(77) and (79)–(81) respectively can be met. In the end, a βmax is determined
together with a control law consisting of q and r (see (3)) and a Lyapunov function V (x) which proves the stability
of the equilibrium point x = 0 of the closed loop system (4) based on Theorem 1 and considering the input saturation
(2). Moreover, the estimation of the region of attraction of the equilibrium point x = 0 of the closed loop system
(4) using the procedure of the optimization of the lower bound is directly given by the domain {x ∈ Rn |V (x) ≤ 1}.
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5 Example
In this section the presented approach is used to construct a rational control law (3) and a Lyapunov function to
prove the stability and estimate the region of attraction of the equilibrium point of the closed loop system (4). The
system is given by the polynomial description

ẋ =
[

−x2
x1 + x2

(
x2

1 −1
) ]

+
[

0
1

]
u, −1 ≤ u ≤ 1 (87)

with an equilibrium point at x = 0 for u = 0 which will be stabilized with the aim of an as large as possible
estimation of the region of attraction and the consideration of the input saturation as shown in the presented design
approach.
First of all, a stabilizing control law and a Lyapunov function is constructed for (87) by using the upper bound
procedure, see Section 4.1. Therefore, the domain D which is the upper bound for the estimation of the region of
attraction must be specified by choosing a positive definite polynomial for p(x) (see (15)), thus the shape of the
upper bound has to be predefined. It turned out in many examples that quadratic polynomials lead to good results,
because the overall SOS-programs (35)–(39) and (50)–(51) become as simple as possible and, thus, easier to solve.
For the considered example (87) which are the known van der pol equations (see [9]) extended with an input, hence
the same ellipse as in [9] is chosen for p(x), i.e. p(x) = 0.378x2

1 − 0.274x1x2 + 0.278x2
2. For the reason of low

complexity all positive definite functions li are chosen to li(x) = 10−4(x2
1 + x2

2).
As already mentioned in Section 4.1, for the first calculation step of β in (35)–(39) a control law q(x), r(x) and
a function V (x) must be provided. Therefore, a linear state feedback for the Jacobian linearization of (87) is
computed with the eigenvalue assignment of λ1 = −2 and λ2 = −3. Afterwards, the quadratic Lyapunov function
Vlin(x) of the Jacobian linearization of the closed loop system using the linear state feedback is chosen for the
initial function of V (x).
The last step before solving (35)–(39) and (50)–(51) is to ascertain the degrees of all unknown polynomials. In
an first attempt a linear control law is chosen, i.e. deg(q) = 1, deg(r) = 0, and the constant r0 in the denominator
(see (3)) is set to r0 = 0.1 for all further considerations. Furthermore, a quadratic Lyapunov function is picked
together with the degrees of the unknown SOS-polynomials si in (35)–(39) and sci in (50)–(51) which are set
to deg(s2,3) = deg(s12) = deg(s16) = 2, deg(s4) = deg(s7,8) = 0 and deg(s6) = deg(sci) = 4. Using the stated
settings Figure 1 shows the estimation of the region of attraction of the closed loop system and the limits of the
input saturation of system (87). Clearly, a linear control law and a Lyapunov function is constructed which proves

−3 −2 −1 0 1 2 3
−4

−3

−2

−1

0

1

2

3

4
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x 2

Figure 1: Estimation of the region of attraction (RoA) for deg(V )=2, deg(q)=1 and deg(r)=0: (-·-·) RoA of the closed
loop system, (· · · ) input saturation, (– –) p = 1.1118, (—) estimation of the RoA of the closed loop system (V = 0.4946)

asymptotic stability of the equilibrium point x = 0 of the closed loop system and an estimation of the region of
attraction is evaluated with βmax = 1.1118 by using (35)–(39) and cmax = 0.4946 by using (50)–(51). Furthermore,
the upper bound in Figure 1 lies entirely within the input saturation so conditions (18)–(19) are fulfilled. In order
to see how the dynamics of the open loop system (87) are changed by the calculated control law, the eigenvalues
of the linearizations are compared. The open loop system (87) has eigenvalues at λ1,2 = −0.5± j0.86 and the
eigenvalues of the closed loop systems using the linear control law are λ1,2 = −0.70± j1.01. So the dynamics
of the closed loop system are slightly faster in this special case but one has to keep in mind, there is no influence
on the resulting dynamics of the closed loop systems using the presented design method. The exact region of
attraction of the equilibrium point of the closed loop system of (87) is shown in Figure 1 which is an unstable limit
cycle and can be identified by a simulation in reverse time, for details see [5]. Comparing the estimation with the
exact region of attraction of the equilibrium point reveals a large difference.
The result for a nonlinear control law, i.e. deg(q) = 5 and deg(r) = 2, a Lyapunov function of degree 6 and the
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setting deg(s2,3) = 6, deg(s6) = 10, deg(s4) = deg(s7,8) = 0, deg(s12) = deg(s16) = 4 and deg(sci) = 4 is shown
in Figure 2. This setting yields βmax = 2.2587 and cmax = 5.178 which is a huge improvement compared to the
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Figure 2: Estimation of the region of attraction (RoA) for deg(V )=6, deg(q)=5 and deg(r)=2: (-·-·) RoA of the closed
loop system, (· · · ) input saturation, (– –) p = 2.2587, (—) estimation of the RoA of the closed loop system (V = 5.178)

linear control law and the quadratic Lyapunov function in Figure 1. Clearly, the nonlinear control law yields a more
flexible shape of the input saturation which yields a larger upper bound βmax, furthermore the Lyapunov function of
degree 6 is also more flexible, thus it can adopt the shape of the exact region of attraction of the equilibrium point
better (see Figure 2). The resulting eigenvalues of the linearization are λ1,2 = −0.82± j0.57 which are slightly
faster than the eigenvalues of the open loop system and the closed loop system using a linear control law.
Second, the optimization of the lower bound (see Section 4.2) is used for the construction of a control law and a
Lyapunov function. Again, the positive definite polynomial p(x) has to be defined for the optimization region P
(see (53)). In order to keep the optimization task as simple as possible a quadratic function is chosen, although
it is uninspired a circle will yield good results, i.e. p(x) = x2

1 + x2
2, and the positive definite functions li are set to

li(x) = 10−4(x2
1 +x2

2) like in the case of the optimization of the upper bound. Because the open loop system (87) is
stable, the initial control function is set to zero, i.e. r(x) = 0. The initial function V (x) is the quadratic Lyapunov
function Vlin(x) of the Jacobian linearization of the open loop system (87). This quadratic Lyapunov function is
multiplied by a factor of 0.1 for the consideration of the lower bound method, i.e. 0.1Vlin(x). It turned out that
this factor yields a tremendous improvement of the region of attraction of the equilibrium point. A possible reason
for this effect is that the optimization problem (66)–(71) is nonlinear and non convex, hence the solution depends
on the initial value because not necessarily a global optimum is achieved. However, the presented design leads to
promising results as shown in the further discussion of the example.
Before solving the optimization task (66)–(71) the degrees of all unknown polynomials have to be chosen. In Figure
3 the result is shown for a nonlinear control law with deg(q) = 3 and deg(r) = 2, a Lyapunov function of degree
4 and the setting deg(s6) = deg(s14) = deg(s18) = 4, deg(s8) = 6 and deg(s9) = 0 for the unknown polynomials
si. The estimation of the region of attraction of the equilibrium point x = 0 using the lower bound method is even
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Figure 3: Estimation of the region of attraction (RoA) for deg(V )=4, deg(q)=3 and deg(r)=2: (-·-·) RoA of the closed
loop system, (· · · ) input saturation, (– –) p = 3.1765, (—) estimation of the RoA of the closed loop system (V = 1)
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larger than the estimation following the upper bound method (see Figure 2 and Figure 3). Furthermore, as specified
in the constraint (56) the lower bound lies entirely within the estimation of the region of attraction V (x) ≤ 1 (see
(54)) and the estimation of the region of attraction lies within the boundaries of the input saturation fulfilling
constraints (58)–(59). Using the optimization of the lower bound yields the eigenvalues λ1 = −0.32 and −2.36
which are real valued and compared to the open loop system and the closed loop system using the optimization of
the upper bound slightly slower. But as already mentioned, there is no influence on the resulting dynamics using
the presented approach.
Both procedures reveal advantages compared to a linear state feedback and a quadratic Lyapunov function. The
rational control law (3) used in the design methods yields a more flexible shape of the input saturation which
becomes quite clear in Figure 2. Furthermore, Lyapunov functions of degree higher than 2 adopt the shape of the
region of attraction much better than a quadratic Lyapunov function which is fixed to an ellipsoidal shape.

6 Conclusion
A design method for the stabilization of an equilibrium point of a nonlinear system was presented in this paper.
Of main interest analyzing a nonlinear system is the region of attraction of the equilibrium point, therefore a
Lyapunov function is needed to get an estimation of the region of attraction. This can be handled by using the
SOS-programming method where a stabilizing control law and a suitable Lyapunov function is constructed within
an optimization task. Furthermore, the consideration of the input saturation which has tremendous influence on
the region of attraction of the equilibrium point is systematically included in the whole design procedure which
yields two additional constraints in the SOS-programs. The degrees of freedom of the nonlinear control law are
used for the construction of the Lyapunov function and the consideration of the input saturation with the aim
of a maximized estimation of the region of attraction of the equilibrium point of the closed loop system. As
the SOS-programming technique is restricted to polynomials only systems with polynomial nonlinearities can be
considered. Nevertheless, as shown in this paper the nonlinear control law is extended to a rational form consisting
of a polynomial nominator and denominator which yields after a small rearrangement polynomial constraints in
the SOS-programs. The problem of bi-/trilinearities in the constraints of the SOS-program can be circumvent by
an iterative algorithm using a bisection in each step for solving the optimization problem. Following the presented
approach, no influence on the dynamics of the closed loop system is possible, but especially instable equilibrium
points of the open loop system are guaranteed to be stabilized by the rational control law. In the end, a numerical
design procedure for a systematic construction of a nonlinear control law and a polynomial Lyapunov function of
degree larger than 2 is derived which often results in a tremendous improvement of the estimation of the region
of attraction of the equilibrium point of the closed loop system compared to a linear control law and the standard
quadratic Lyapunov function. The basic idea is implemented in two different algorithms where both provided good
results for the considered example.
The presented design method can be used for systems with limited state variables (for details see [3]) with a
slight modification of the constraints in the SOS-programs. The conditions for the input saturation have to be
replaced with one condition for each limit of a state variable which yields possibly more constraints but these
can be computed easier because no bilinear terms appear in these constraints. Of course, a combination of input
saturation and limited state variables using the SOS-programming technique is also possible.
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