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Abstract. A finite integral transformation method for the solution of initial-boundary value problems
for hyperbolic systems of PDEs recently proposed by Y. Senitskii is generalized to nonselfadjoint case.
The new method is applicable to dissipative non-symmetrical visco- and thermovisco-elastic dynamic
problems for which classical approaches apparently fail. The obtained solutions are of the form of
spectral expansions based on complete biorthogonal sets of eigenfunctions and associated functions,
corresponding to adjoint pairs of matrix operator pencils. The co-ordinate functions of mentioned
expansions, namely transforms, one can obtain by applying the special integral transformation with the
matrix kernel, thus reducing the problem to the sequence of initial problems for ODEs. As illustrative
example the coupled dynamic thermoviscoelastic problem for a finite cylinder is solved.

1 Nonsymmetrical finite integral transformations
A fundamental contribution to the theory of strongly damped nonselfadjoint initially-boundary value problems
(IBVP) is due to Keldysh, Markus, Krein, Langer et al. Recent contribution may be found e.g. [1, 2, 3]. The
minimality, completeness and basis properties of the eigenfunctions and associative functions corresponding to the
wide range of IBVP are proved in the cited papers. It affords the theoretical background for the representations of
solutions in the form of spectral expansions, particular, by the integral transformations.

Let f(x, t) and y(i)
0 (x)(i = 0, . . . ,m− 1) be the square integrable vector-functions defined in V × [0,∞[ and V re-

spectively; V ⊂ Rn. Assume that V is compact. Let Ai (i = 0, . . . ,m) be the nonselfadjoint differential operators in
the Hilbert space L2

μ with scalar product 〈v,w〉=
∫

V vTμ wdV (x), where μ is the metric matrix-function. Consider
the following IBVP:

m

∑
i=0

Ai
∂ i

∂ ti y(x, t) = f(x, t),
∂ i

∂ ti y(x, t)
⏐⏐⏐⏐

t=0

= y(i)
0 (x), i = 0, . . . ,m−1, y(x, t) ∈ D, (1)

where D = {y|y ∈ L2
μ ∩C(n)

x ∧B(y) = 0}, B is the boundary operator, defined by prescribed boundary conditions.

The obtained solutions of IBVP (1) are of the form of spectral expansions based on complete biorthogonal sets of
eigenfunctions and associated functions, corresponding to the conjugate pairs of matrix operator pencils Lν , L∗

ν :

Lν =
m

∑
i=0

ν iAi, L∗
ν =

m

∑
i=0

ν iA∗
i , (u ∈ D∧v ∈ D∗) ⇔ (〈L∗

ν u,v〉−〈u,Lν v〉 = 0). (2)

Here A∗
i are conjugate to Ai differential operators, defined in the domain D∗, that defined by boundary operator

B∗ conversely. The explicit analytical formulas for A∗
i ,B

∗ are given in [4].

The coefficients of expansions referred to as transforms one can obtain by applying direct integral transformation
I∗ to (1), resulting in the reduction IBVP (1) to the sequence of initial problems for ODEs in image space [4]. The
operators of direct and inverse transformations are:

ϕ = F∗u = − 1

ν
〈K∗

ν ,A0u〉, u = Fϕ =
∞

∑
i=1

KνiQνi ϕ, (3)

where Kν , K∗
ν are matrix-function kernels, Qν is the normalizing matrix and νi (i = 1, . . . ,∞) are the elements of

pencil discrete spectrum. The operator kernels (3) represent the biorthogonal basis of root subspaces, correspond-
ing to spectral singularities of pencils (2), and they are formulated as compositions of eigenfunction and associated
functions:

Kν =
(
Gs Gs−1 . . .G1

)
, K∗

ν =
(
G∗

s G∗
s−1 . . .G∗

1

)
. (4)

One can found Gs, G∗
s by solving the coupled set of boundary value problems (s depends on multiplicity of spectral

singularity):

Lν Gs = 0, BGs = 0, Lν Gs−i = −
i

∑
j=1

1

j!
L

( j)
ν Gs−i+ j, BGs−i = 0,
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L∗
ν G∗

s = 0, B∗G∗
s = 0, L∗

ν G∗
s−i = −

i

∑
j=1

1

j!
L
∗( j)
ν G∗

s−i+ j,
i

∑
j=0

1

j!

(
∂ j

∂ν j B
∗
ν

)
G∗

s−i+ j = 0 (s− i > 0).

The constructible representation of normalizing matrix Qν and the exact method for evaluation of corresponding

quadratures are described in [5]. Note, that operation property [4] here is in the form ∑m
i=0

[
ΛT

]i

F∗
νAi = 0, where

Λ is block-diagonal (Jordan) matrix. For this reason the result of suggested integral transformation, unlike known
analogues, is similar to Jordan matrix decomposition.

The corresponding to introduced transformations generalized algorithmic procedure resolving the IBVP is de-
scribed in [4]. It enable us to represent the solution of (1) as follows:

y = F

[
exp(ΛT

t)
m

∑
i=1

m

∑
j=i
ΛT( j−i)

F∗A jy
(i−1)
0 +

∫ t

0
exp

[
ΛT

(t − τ)
]
F∗f(τ)dτ

]
. (5)

The proposed generalization of biorthogonal transformation is applicable to analysis of dissipative dynamic sys-
tems, particular for dynamic viscoelastic and coupled dynamic thermoelastic nonselfadjoint IBVP.

2 Closed solutions of thermoviscoelastic problems
Consider the coupled equations of viscoelastic motion and heat conduction in cylindrical co-ordinate system(

L1 −γL2

0 ∇2

)
y+

(
L′

1 0
−ηL3 −1/κ

)
∂
∂ t

y+

(−ρE 0
0 0

)
∂ 2

∂ t
y = f, (6)

wherein f = (−Xr,−Xϕ ,−Xz,−ω) is prescribed vector-function, defined by volumetric force and heat sources
intensity, E is identity operator, L1, . . .L3 are the following differential operators:

L1 =

⎛⎜⎜⎝
μ(∇2− 1

r2 )+(K+ μ
3 ) ∂

∂ r

( ∂
∂ r +

1
r

) K+μ/3
r

∂
∂ϕ

( ∂
∂ r− 1

r

)− 2μ
r2

∂
∂ϕ (K+ μ

3 ) ∂ 2

∂ r∂ z
2μ
r2

∂
∂ϕ + K+μ/3

r
∂

∂ϕ
( ∂

∂ r +
1
r

)
μ(∇2− 1

r2 )+ K+μ/3

r2
∂ 2

∂ϕ2
K+μ/3

r
∂ 2

∂ϕ∂ z

(K + μ
3 ) ∂

∂ z

( ∂
∂ r +

1
r

) K+μ/3
r

∂ 2

∂ z∂ϕ μ∇2+(K+ μ
3 ) ∂ 2

∂ z2

⎞⎟⎟⎠ ,

L′
1 = μ ′

⎛⎜⎜⎝
∇2− 1

r2 + 1
3

∂
∂ r

( ∂
∂ r +

1
r

)
1
3r

∂
∂ϕ

( ∂
∂ r− 1

r

)− 2
r2

∂
∂ϕ

1
3

∂ 2

∂ r∂ z
2
r2

∂
∂ϕ + 1

3r
∂

∂ϕ
( ∂

∂ r +
1
r

)
∇2− 1

r2 + 1
3r2

∂ 2

∂ϕ2
1
3r

∂ 2

∂ϕ∂ z
1
3

∂
∂ z

( ∂
∂ r +

1
r

)
1
3r

∂ 2

∂ z∂ϕ ∇2+ 1
3

∂ 2

∂ z2

⎞⎟⎟⎠ ,

L2 =
(

∂
∂ r

1
r

∂
∂ϕ

∂
∂ z

)T
, L3 =

(
∂
∂ r +

1
r

1
r

∂
∂ϕ

∂
∂ z

)
, ∇2 =

∂ 2

∂ r2
+

1

r
∂
∂ r

+
1

r2

∂ 2

∂ϕ2
+

∂ 2

∂ z2
,

K,μ are the elastic modulus; γ,η are the thermomechanical constants; κ is the thermal conductivity coefficient, ρ
is the density, μ ′ is the viscosity modulus.

The boundary conditions D are arbitrary on lateral area and have some restrictions on end faces (to admit the
separation of variables, see [6]). In particular the boundary condition may be formulated as

D = {y|y ∈ L4
2,By = 0,y = O(1)}, (7)

By=

⎛⎜⎜⎝
B1y

∣∣
r=R

B2y
∣∣
z=0

B2y
∣∣
z=H

[y]2π
0

⎞⎟⎟⎠ , B1 =

⎛⎜⎜⎜⎝
ϑ ∂

∂ r +
λ
r

λ
r

∂
∂ϕ λ ∂

∂ z −γ
∂
∂ z 0 ∂

∂ r 0
1
r

∂
∂ϕ

∂
∂ r − 1

r 0 0

0 0 0 ∂
∂ r

⎞⎟⎟⎟⎠ , B2 =

⎛⎜⎜⎜⎝
0 0 1 0
∂
∂ z 0 ∂

∂ r 0

0 ∂
∂ z

1
r

∂
∂ϕ 0

0 0 0 ∂
∂ r

⎞⎟⎟⎟⎠ ,

wherein [y]2π
0 = y

∣∣
ϕ=0

−y
∣∣
ϕ=2π , ϑ = 4(μ + μ ′∂/∂ t)/3+K, λ = K−2(μ + μ ′∂/∂ t)/3). Initial values are defined

by initial distributions of temperature, displacements and velocities, i.e.

θ
∣∣
t=0

= θ0; u
∣∣
t=0

= u0, v
∣∣
t=0

= v0, w
∣∣
t=0

= w0; u̇
∣∣
t=0

= u̇0, v̇
∣∣
t=0

= v̇0, ẇ
∣∣
t=0

= ẇ0.

The obtained solutions of problem (6), (7) are of the form of spectral expansions based on complete biorthogonal
sets of eigenfunctions (and perforce associated functions), corresponding to the mutual conjugate pairs of matrix
operator pencils Lν , L∗

ν :

Lν = A0 +A1ν +A2ν2, L∗
ν = A∗

0 +A∗
1ν +A2ν2,

A∗
0 =

(
L1 0

γL3 ∇2

)
, A∗

1 =

(
L′

1 ηL2

0 −1/κ

)
.
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Here A∗
i are conjugate to Ai differential operators, defined in the domain D∗, defined by boundary operator B∗.

B∗y=

⎛⎜⎜⎝
B∗

1y
∣∣
r=R

B2y
∣∣
z=0

B2y
∣∣
z=H

[y]2π
0

⎞⎟⎟⎠ , B∗
1 =

⎛⎜⎜⎜⎝
ϑ ∂

∂ r + λ
r

λ
r

∂
∂ϕ λ ∂

∂ z νη
∂
∂ z 0 ∂

∂ r 0
1
r

∂
∂ϕ

∂
∂ r − 1

r 0 0

0 0 0 ∂
∂ r

⎞⎟⎟⎟⎠ .

The coefficients of expansions referred to as transforms one can obtain by applying direct integral transformation
to (6), resulting in the reduction initial boundary value problem to the sequence of initial problems for ODEs in
image space [4]. It enable us to represent the solution of (6), (7) in the case of simple spectrum as follows:

y =
∞

∑
i=1

[(〈A∗
1k∗

i +ν iA
∗
2k∗

i ,y0〉+ 〈A∗
2k∗

i , ẏ0〉
)
exp(ν it)+

t∫
0

〈f(τ),k∗
i 〉exp

(
ν i(t − τ)

)
dτ

]
kiQ

−1
i . (8)

In equation (8) Qν is the normalizing matrix

Qi = 〈A1ki,k∗
i 〉+2νi 〈A2ki,k∗

i 〉
and νi (i = 1, . . . ,∞) are the elements of pencil discrete spectrum. Note, that biorthogonal relations [4] here are in
the form 〈

A1ki,k∗
j
〉
+(νi +ν j)

〈
A2ki,k∗

j
〉

= 0,
〈
A0ki,k∗

j
〉−νiν j

〈
A2ki,k∗

j
〉

= 0.

One can found ki, k∗
i by solving the coupled set of boundary eigenvalue problems:

Lν k = 0 (k ∈ D), L∗
ν k∗ = 0 (k∗ ∈ D∗). (9)

The solution of differential equation (91) may be obtained as

k = YC, C = (c1,c2,c3,c4), Y = YϕzYr, (10)

Yϕz = diag

[{
sinnϕ
cosnϕ

}
cosm′z,

{
cosnϕ
sinnϕ

}
cosm′z,

{
sinnϕ
cosnϕ

}
sinm′z,

{
sinnϕ
cosnϕ

}
cosm′z

]
,

Yr =

⎛⎜⎜⎝
Y 11

r Y 12
r − n

r Jn(s3r) −mπ
H Jn+1(s3r)

nζ1
r Jn(s1r) n

r Jn(s2r) s3Jn+1(s3r)− n
r Jn(s3r) mπ

H Jn+1(s3r)
−mπζ1

H Jn(s1r) −mπ
H Jn(s2r) 0 s3Jn(s3r)

Jn(s1r) ζ2Jn(s2r) 0 0

⎞⎟⎟⎠ ,

where Jn are Bessel functions of the first kind, n,m are natural numbers,

m′ =
mπ
H

, Y 11
r =

nζ1

r
Jn(s1r)−s1ζ1Jn+1(s1r), Y 12

r =
n
r

Jn(s2r)−s2Jn+1(s2r)

and ζ1, . . . ,ζ5, s1, . . . ,s3 are the following parameters

ζ1 =
ζ3 −ζ4 +ζ5

2ζ3ν2
, ζ2 =

2ζ3ν2

ζ3 −ζ4 −ζ5
, s1,2 =

√
m′2 +ν

ζ3 +ζ4 ±ζ5

2κ (4(μ +νμ ′)/3+K)
, s3 =

√
m′2 +

ν2ρ
μ

,

ζ3 = νρκ, ζ4 = γηκ +4
(
μ +νμ ′)/3+K, ζ5 =

√
(ζ3 +ζ4)2 −4ζ3 (4(μ +νμ ′)/3+K).

The solutions (10) of system (91) satisfy the boundary conditions (7) at the ends, the periodicity conditions, and the
boundedness conditions; but for arbitrary values of the constants c1, . . . ,c4 and the parameter ν , conditions on the
lateral surface of the cylinder are not satisfied in general. By substituting the expressions (10) into the boundary
conditions (7), we obtain a homogeneous system of algebraic equations for the constants c1, . . . ,c4:

DC = 0, C = (c1,c2,c3,c4), D = B1Y (11)

After the corresponding operations of differentiation and reduction of the Bessel functions to the orders n and
n+1, we obtain the following expression for the matrix D:

D = Adiag
[
Jn(s1R),Jn(s2R),Jn(s3R),Jn(s3R)

]
+Bdiag

[
Jn+1(s1R),Jn+1(s2R),Jn+1(s3R),Jn+1(s3R)

]
,
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A =

⎛⎜⎜⎜⎜⎝
ζ1

(
2ζ6l
R2 −ζ7s2

1 − ζ8m2π2

H2

)
− γ 2ζ6l

R2 −ζ7s2
2 − ζ8m2π2

H2 − γζ2 − 2ζ6l
R2 − 2ζ6mπs3

H

−2mn πζ1
HR −2mn π

HR mn π
HR n s3

R
2l ζ1

R2 2 l
R2 s2

3 −2 l
R2 m πs3

H
n
R n ζ2

R 0 0

⎞⎟⎟⎟⎟⎠ ,

B =

⎛⎜⎜⎜⎝
2ζ6

s1ζ1
R 2ζ6

s2
R 2ζ6

ns3
R 2ζ6

m(n+1)π
HR

2
mπs1ζ1

H 2 mπs2
H 0 m2π2

H2 − s2
3

−2
ns1ζ1

R −2 ns2
R −2 s3

R −2
m(n+1)π

HR−s1 −s2ζ2 0 0

⎞⎟⎟⎟⎠ ,

ζ6 = μ +νμ ′, ζ7 =
4

3

(
μ +νμ ′)+K, ζ8 = K − 2

3

(
μ +νμ ′) , l = n2 −n.

System (11) of homogeneous equations has a nontrivial solution under the condition that the determinant:

|D| = |D(n,m,ν)| = 0 (12)

is zero. For fixed integers n = N and m = M, the roots of Eq. (12) form a sequence of eigenvalues{
νNM

i
}∞

i=1
= {ν |ν ∈ C,D(M,N,ν) = 0},

which are associated with nontrivial solutions of the system of algebraic equations (11), CNM
i = (cNM

1i , . . . ,cNM
4i ),

and with nontrivial solutions of the Sturm–Liouville boundary value problem, i.e, with the eigenfunctions kNM
i =

Y|n=N,m=M,ν=νNM
i

CNM
i (Fig.1). Combining the sequences {kNM

i } constructed for all integer N and M, we obtain

a complete system of eigenfunctions, which can be linearly arranged in ascending order of absolute values of the
corresponding eigenvalues νNM

i . Since the adjoint Sturm–Liouville problem (92) can formally be obtained from
the direct problem by transposing the opposite values of the coefficients νη and γ , we see that the adjoint eigen-
functions k∗

i are calculated by the same dependencies as ki with the above rearrangement and the replacement of ν
by ν . We note that when calculating the partial sums of the obtained spectral expansions, it is important to preserve
the order of summation according to the position of the limit points on the complex plane. The completeness of
the biorthogonal system ki, k∗

i ensures the mean square convergence of the representations for displacements.

It is important to note, that, unlike well-known transformation technique (Laplace transform, etc.), that uses nu-
merical approach for inversion, proposed method admit to obtain solution in closed analytical form and to develop
effective algorithmic realization of computer simulation.

Fig. 1. 3D representation of the real parts of eigenfunctions (torsional, dilative, bending and prportional types).
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