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Abstract. We present a discrete two-regional Kaldorian macrodynamic model with flexible ex-
change rates, and explore the stability of equilibrium and the possibility of generation of business 
cycles. The structures of the two regional economies are assumed similar. The model is five-
dimensional with three basic parameters, the common speed of adjustment of the goods markets 
and the degrees of economic interaction between the regions through trade and capital movement. 
We use a grid search method in two-dimensional parameter subspaces, and coefficient criteria for 
the flip and Hopf bifurcation curves, to determine the stability of equilibrium region and its 
boundary curves in several parameter ranges. We find that the model is characterized by enhanced 
stability of equilibrium, while its predominant asymptotic dynamical behavior when equilibrium 
is unstable is period doubling. This evolves to chaotic behavior by going through an intermediate 
phase of period–2 cycles. Business cycles are scarce and short-lived in parameter space, occurring 
at large values of the degree of capital movement. A characteristic difference from the fixed ex-
change rates system considered previously is that in our present system for cycles to occur suffi-
cient amount of trade is required together with high levels of capital movement. Examples of bi-
furcation and Lyapunov exponent diagrams are given. 

1 Introduction 
Aspects of international macroeconomics and regional economics are studied recently by methods of nonlinear 
economic dynamics (see e.g. [10], [9], and [1]). In particular, the Kaldorian business cycle theory originated by 
Kaldor [6] has been developed by Lorenz [8], Gandolfo [5], and others. Interregional Kaldorian macrodynamic 
models of business cycles, based on trade interaction between the regions, have been studied in [7] and [9].  

In this paper we study the economic interdependency between two regions. We present a five-dimensional 
nonlinear discrete time model of the economic transactions between the regions with flexible exchange rates. 
The present work is a sequel to our previous study of the corresponding model of two-regional Macrodynamics 
with fixed exchange rates [3]. The economic structures of both regions, assumed similar, are characterized by the 
Kaldorian business cycle model, and the two regions interact economically through trade and capital movement. 
These two factors of economic interaction are expressed by separate terms of the model equations and quantified 
by means of the basic interaction parameters, =  for trade and �  for capital movement. The present model is an 
extended two-regional version of the Kaldorian small open economy model with flexible exchange rates, which 
was expressed as a three-dimensional system of nonlinear difference equations and considered in [2]. 

We explore our two-regional macrodynamic model numerically focusing on the stability of equilibrium under 
variations of the model parameters and on the asymptotic behavior of the system outside the stability region, and 
consider in particular the possibility of occurrence of business cycles. For a five-dimensional model with several 
parameters this is a formidable task. However, by means of a numerical grid search method and analytical coef-
ficient criteria, we determine the stability region in several two-dimensional sections of the parameter space and 
identify the flip bifurcation curve and the Hopf-Neimark bifurcation curve as parts of the boundary of this re-
gion.  

The model exhibits complex dynamics. Certain conclusions are drawn on the effects of the model parameters. 
These regard mainly the size of the region of stability of equilibrium in parameter space, the possibility of occur-
rence of business cycles at reasonably small values of the interaction parameters, and the type of predominant 
asymptotic dynamical behavior of the system outside the stability region.  

2 Structure of the model 
The following set of equations (1) – (9) is common to the two-regional Kaldorian macrodynamic model with 
flexible exchange rates in this paper and that with fixed exchange rates in [3]. 

Kaldorian quantity adjustment process in the goods market:  
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' (( 1) ( ) ( ) ( ) ( ) ( ) ; 0.i i i i i i i i iY t Y t C t I t G J t Y t7 7� � � � � � � #  (1) 

Capital accumulation equation: 

( 1) ( ) ( ).i i iK t K t I t� � �   (2) 

Consumption function: 

' ( 0 0( ) ( ) ( ) ; 0 1, 0.i i i i i i iC t c Y t T t C c C� � � A A #  (3) 

Investment function: 

� 	( ) ( ), ( ), ( ) ; 0, 0, 0.i i i
i i i i i

i i i

I I I
I t I Y t K t r t

Y K r
- - -

� # A A
- - -

 (4) 

Tax function: 

0 0( ) ( ) ; 0 1, 0.i i i i i iT t Y t T T) )� � A A #   (5) 

Equilibrium condition for money market: 

� 	( )
( ), ( ) ; 0, 0.i i i

i i i
i i i

M t L L
L Y t r t

p Y r
- -

� # A
- -

  (6) 

Current account function of region 1: 

� 	 1 1 1
1 1 1 2

1 2
( ) ( ), ( ), ( ) ; 0, 0, 0,

H H H
J t H Y t Y t E t

Y Y E
=

- - -
� A # #

- - -
  0 1.=D D  (7) 

Capital account function of region 1: 

1 1 2
( ) ( )

( ) ( ) ( ) ; 0.
( )

eE t E tQ t r t r t
E t

� �
! ��

� � � #� �
 �

  (8) 

Definition of total balance of payments of region 1: 

1 1 1( ) ( ) ( ).A t J t Q t� �   (9) 

Here t  denotes the time period and ( 1, 2)i �  is the index number of a region. The meanings of the symbols are 
as follows: iY � real regional income, iC � real private consumption expenditure, iI � real private investment 
expenditure on physical capital, iG � real government expenditure (fixed), iK � real physical capital stock, 

iT � real income tax, ir � nominal rate of interest, iM � nominal money supply, ip � price level (fixed), 
E � exchange rate (1 unit of currency of region 2 = E units of currency of region 1), eE � expected exchange 
rate of near future, iJ � balance of current account (net export) in real terms 2 2 1 1( ),Ep J p J� �  iQ � balance of 
capital account in real terms 2 2 1 1( ),Ep Q p Q� � i i iA J Q� � � total balance of payments in real terms 

2 2 1 1( ),Ep A p A� �  i7 � adjustment speed in the goods market, � � degree of capital mobility, = � degree of 
interregional trade. 

The following set of equations (10) – (12) is peculiar to the model with flexible exchange rates in this paper: 

1 ( ) 0,A t �   (10) 
( 1) ( ) [ ( ) ( )]; 0,e e eE t E t E t E t5 5� � � � #   (11) 
( ) .i iM t M const� �   (12) 

Furthermore, we fix price levels as follows without loss of generality:   

1 2 1.p p� �   (13) 

Equation (10) means that the exchange rate ( )E t  is determined endogenously to keep the equilibrium of the total 
balance of payments instantaneously. Equation (11) formalizes the adaptive expectation hypothesis of the 
changes of the expected exchange rate ( ).eE t  It is worth noting that the nominal money supply of each region 
can be controlled by the monetary authority of each region independent of interregional trade and interregional 
capital movement in our model with flexible exchange rates. Equation (12) means that nominal money supply of 
each region is fixed by the regional monetary authority. In our model price levels, except the exchange rate, are 
supposed to be fixed for simplicity. Equation (13) is the normalization procedure to simplify the notation. 

3 Derivation of the fundamental dynamical system of equations 
Next, we derive the fundamental dynamical system of equations in this paper, which is a five-dimensional sys-
tem of nonlinear difference equations. Substituting Equations (12) and (13) into Equation (6) and solving with 
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respect to ),(tri  we have the following “LM equation” (dependence of the rate of interest on income) in each 
region: 

� 	 /
( ) ( ) ; 0.

/
i i i

i i i
i i i

r L Y
r t r Y t

Y L r
- - -

� � � #
- - -

  (14) 

Substituting now Equations (7), (8), and (9) into Equation (10), we have: 

� 	 � 	 � 	1 1 2 1 1 2 2
( )( ), ( ), ( ) ( ) ( ) 1 0.
( )

eE tH Y t Y t E t r Y t r Y t
E t

= �
! �

� � � � �� �
� � �

 (15) 

Solving this equation with respect to ( )E t  we obtain an expression of the exchange rate ( )E t  as an endogenous 
variable: 

� 	1 2( ) ( ), ( ), ( ); , ,eE t E Y t Y t E t � =�   (16) 

and differentiating (15) with respect to 1 2,Y Y  and eE  we obtain: 

� 	
� 	

1 1 1 1
2

1 1

( / ) ( / ) /
,

( / ) ( / ) /e

H Y r YE
Y H E E E

� =
� =

� - - � - --
�

- - - �
    

� 	
� 	

1 2 2 2
2

2 1

( / ) ( / ) /
,

( / ) ( / ) /e

H Y r YE
Y H E E E

� =
� =

� - - � - --
�

- - - �
 (17) 

� 	
� 	1

/
0.

( / ) ( / ) /e e

E
E H E E E E

� =
� =

-
� #

- - - �
  (18) 

We note that due to (7) we have: 1 2/ 0, / 0,E Y E Y- - # - - A  for sufficiently small values of / ,� =  and 
1 2/ 0, / 0,E Y E Y- - A - - # for sufficiently large values of / .� =  Substituting equations (2) – (5), (7), (14) and 

(16) into equations (1), (2), and (11), we obtain the following nonlinear five dimensional system of difference 
equations, which is our fundamental system of dynamical equations: 

� 	� 	1 1 1 1 1 1 1 01 01 1 1 1 1 1 1( 1) ( ) (1 ) ( ) ( ), ( ), ( )Y t Y t c Y t c T C G I Y t K t r Y t7 )!� � � � � � � �  

   � 	� 	 � 	1 1 2 1 2 1 1 1 1 2 1( ), ( ), ( ), ( ), ( ); , ( ) ( ), ( ), ( ), ( ); , , ,e eH Y t Y t E Y t Y t E t Y t F Y t K t Y t E t= � = 7 � =�� � ���
 (19) 

� 	� 	 � 	1 1 1 1 1 1 1 2 1 1( 1) ( ) ( ), ( ), ( ) ( ), ( ) ,K t K t I Y t K t r Y t F Y t K t� � � �  (20) 

� 	� 	2 2 2 2 2 2 2 02 02 2 2 2 2 2 2( 1) ( ) (1 ) ( ) ( ), ( ), ( )Y t Y t c Y t c T C G I Y t K t r Y t7 )!� � � � � � � �  

      � 	� 	 � 	1 1 2 1 2 1 2 2( ), ( ), ( ), ( ), ( ); , / ( ), ( ), ( ); , ( )e eH Y t Y t E Y t Y t E t E Y t Y t E t Y t= � = � = �� � ��
 

 � 	3 1 2 2 2( ), ( ), ( ), ( ); , , ,eF Y t Y t K t E t 7 � =�  (21) 

� 	� 	 � 	2 2 2 2 2 2 2 4 2 2( 1) ( ) ( ), ( ), ( ) ( ), ( ) ,K t K t I Y t K t r Y t F Y t K t� � � �  (22) 

� 	 � 	1 2 5 1 2( 1) ( ) ( ), ( ), ( ); , ( ), ( ), ( ); , .e e e e eE t E t E Y t Y t E t E F Y t Y t E t5 � = � =! �� � � � � �  (23) 

4 Functional forms and specifications 
For our numerical exploration the fundamental system of dynamical equations is employed in the form: 

' (. /1 1 1 1 1 1 1 1 1( 1) ( ) ( ) ( ) (1 ) 1 ( ) ,Y t Y t t H t c Y t Z7 + = )� � � � � � � �  (24) 

1 1 1( 1) ( ) ( ),K t K t t+� � �   (25) 

' (. /2 2 2 2 1 2 2 2 2( 1) ( ) ( ) ( ) / ( ) (1 ) 1 ( ) ,Y t Y t t H t E t c Y t Z7 + = )� � � � � � � �  (26) 

2 2 2( 1) ( ) ( ),K t K t t+� � �   (27) 

( 1) ( ) ( ) ( ) ,e e eE t E t E t E t5 ! �� � � � �   (28) 

where we have adopted the following functional forms: 

� 	 3 ( )
( ) ( ) ( ), 1, 2,

10
i

i i i

K t
t f Y t r t i+ � � � �   (29) 

1 / 4( ) 10 ( ) , 1, 2,i i ir t M Y t i� � � �   (30) 
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1 2
1

3 ( ) 3 ( )100( ) 100 ,
( ) 10 10

Y t Y t
H t

E t
� � � �   (31) 

and the numerical specifications: 

1 2 1 2 1 2300, 0.8, 0.2,M M c c ) )� � � � � �   (32) 

1 1 01 01 1 2 2 02 02 2 75,Z c T C G Z c T C G� � � � � � � �   (33) 

corresponding to similarly structured regional economies. The function f  is a particular case of the Kaldorian 
sigmoid direct dependence of the investment function on income (see e.g. [4]), given by:  

80 9( ) tan ( 250) 35.
80

f x arc x,
,

! �� � �� � �
  (34) 

These functional forms and specifications are taken in the present case to be essentially the same as in the case of 
fixed exchange rates [3], so as to facilitate comparison of results. The right-hand sides of the system now be-
come: 

� 	 1/ 41 1 2
1 1 1 1 1

3 ( ) 3 ( ) 3 ( )36 100300 ( ) 10 ( ) ( ) 100 ,
10 100 ( ) 10 10
K t Y t Y tf Z f Y t Y t Y t

E t
7 =

T! �$ U� � � � � � � � � �% V� �
& U � W

 (35) 

� 	 1 / 41
2 1 1

3
300 ( ) 10 ( ) ,

10
K

f f Y t Y t� � � �    (36) 

� 	 1/ 42 1 2
3 2 2 2 2

3 ( ) 3 ( ) 3 ( )36 100300 ( ) 10 ( ) ( ) 100 ,
10 100 ( ) ( ) 10 10

K t Y t Y tf Z f Y t Y t Y t
E t E t
=7

T! �$ U� � � � � � � � � �% V� �
& U � W

 (37) 

� 	 1 / 42
4 2 2

3 ( )
300 ( ) 10 ( ) ,

10
K t

f f Y t Y t� � � �   (38) 

5 ( ) ( ) ,ef E t E t5 ! �� � �   (39) 

and the system is completed by Equation (15) which takes the form:  

1 / 4 1 / 41 2
1 2

3 ( ) 3 ( ) ( )100100 1 10 ( ) 10 ( ) 0.
( ) 10 10 ( )

eY t Y t E t Y t Y t
E t E t

= �
! �! �

� � � � � � � �� �� �
 �  �

 (40) 

The expression (16) of the exchange rate is now: 

' (1 / 4 1 / 4
1 2 1 2

10 100 ( )
( ) ,

10 1 10 ( ) 10 ( ) 1000 3 ( ) 3 ( )

eE t
E t

Y t Y t Y t Y t

= �

� =

! �� ��
! �� � � � � �

 (41) 

and the final recurrence system is obtained by substituting this into Equations (35) and (37). For simplicity, in 
our numerical exploration we shall further assume equal speeds of adjustment of the goods markets in the two 
regions 1 2( ),7 7 7� �  thus reducing the space of essential parameters of the model, from four-dimensional 

1 2( , , , )7 7 � =  to three-dimensional ( , , ).7 � =  However, variations of the quantities 5  and ,Z  as secondary 
parameters, can also be discussed. 

5 Position and stability of equilibrium 
To find the equilibrium values of the system, denoted below by asterisks, we first observe that Equation (39) 
implies * * ,eE E�  and substituting this into Equation (41) we obtain:  

* *
* 1 / 4 * 1 / 4 * *

1 2 1 2

1000 .
100 ( ) ( ) ( 1000 3 3 )

eE E
Y Y Y Y

=
� =

� � �
! �� � � � � � �

 (42) 

It is then found from Equations (35) – (38) and (42) that the equilibrium values of our flexible exchange rates 
model under the above specifications are: 

* *
1 2

25
,

9
Z

Y Y� �    * * 1 / 4
1 2

25 2510 300 ( ) 10( ) ,
3 9 9

Z Z
K K f! �� � � �� � �

   * * 1.eE E� �  (43) 

In particular, for 75Z �  we obtain the equilibrium values: * * * *
1 2 1 2625 / 3 208.333, 862.449.Y Y K K� � X � X  

Stability of the equilibrium is determined by the roots of the characteristic polynomial of the Jacobian of the 
mapping, i.e. the matrix:  
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*
1 2 3 4 5 1 1 2 2( ), , 1, , 5, ( , , , , ) ( , , , , ),ei

j

f
J I i j x x x x x Y K Y K E

x
-

� � � �
-

�  (44) 

where I is the 5 5"  unit matrix, and the superscript (*)  denotes evaluation at the equilibrium. The characteristic 
equation is a quintic: 

5 4 3 2
5 4 3 2 1 0( ) 0,P a a a a a� � � � � �� � � � � � �   (45) 

and for stability all its roots, real or complex, must be inside the unit circle in the complex plane.  

Our basic tool for the numerical determination of the region of stability is a two-dimensional grid-search tech-
nique. We compute the characteristic polynomial (45) and its roots at the node points of a dense grid covering a 
region of interest in a two-dimensional section of the space of parameters, and store for graphical representation 
the points at which the equilibrium is stable.  

   
    

 

    

 

    

 
Figure 1: Region of stability of equilibrium in the ( , )� =  plane for 1.25 �  and sample values of .7     

The technique is first employed to determine the stability diagrams of Figure 1 showing the stability region in the 
( , )� =  parameter plane for fixed 1.25 �  and for different values of the common speed of adjustment of the 
goods markets .7  The part of the stability region in which the roots of the characteristic equation are all real is 
shown dark-shaded, while the part in which some of the roots are complex conjugate is shown light-shaded. In 
these diagrams the flip bifurcation condition:  

1 5 0 2 4 1 3( , , , ) ( 1) (1 ) 0,g P a a a a a7 � 5 = � � � � � � � � �  (46) 

is drawn in as a bold dashed curve. The Hopf bifurcation curve is also drawn in, as a continuous curve. We have 
found that in all stability diagrams of this paper the Hopf bifurcation curve can be determined by requiring that 
two of the roots of the characteristic polynomial have unit product [3], and is given by the following relation of 
the coefficients of the characteristic polynomial:  

4 2 2 2 2 2
2 0 0 1 2 0 2 0 1 3 1 3 1 0 3( , , , ) ( 2) ( 3 2 1) (1 ) ( 1)g a a a a a a a a a a a a a a7 � 5 = ! �� � � � � � � � � � � � � �  

. /2 2 2 2 2 3
4 0 1 2 0 0 1 3 1 3 4 0 1 0 2 0 4(1 2 ) 3 (2 ) 1 ( ) 0.a a a a a a a a a a a a a a a a a! �� � � � � � � � � � � � � � �  (47) 

Each one of relations (46) and (47) is the implicit equation of a surface in the four-dimensional space of the pa-
rameters ( , , , ),7 � 5 =  the contours of which for fixed 5  and for various levels of 7  provide in the ( , )� =  plane 
one or more curves. Segments of the curves arising from (46) form the part of the boundary of the stability re-
gion that is a flip bifurcation curve, and similarly segments of the curves arising from (47) form the part of the 
boundary of the stability region that is a Hopf bifurcation curve. Segments of the above curves that are not parts 
of the boundary of the stability region do not correspond to loss of stability and can be ignored. These two rela-

1198

I. Troch, F. Breitenecker, eds.      ISBN 978-3-901608-35-3



tions can therefore be employed, in combination with the grid search technique, as coefficient criteria for flip 
bifurcations and Hopf bifurcations in the present case of our five-dimensional discrete system. 

The above tools are similarly employed to determine the stability region in the ( , )� 7  plane for 1.25 �  and 
different values of the level of trade transactions .=  Some of the stability regions found are shown in Figure 2. 

  

   

Figure 2: Region of stability of equilibrium in the ( , )� 7  plane for 1.25 �  and sample values of .=    

6 Geometrical aspects and implications 
Let us now consider the geometrical aspects of the boundary curves of the stability region. We begin by noting 
that in our model Equation (46) is equivalent to a quadratic with respect to :7  

' (. /3 / 4
1 00 00( , , , ) (1 ) 10(1 ) 50( 2) 3 10 3 ( 2) 0,g 7 � 5 = 7 7 7 7 � 5 = 7�= 5! �� � � � � � � " � � �   (48) 

with roots 1
00 ,7 7 ��  and   

' (

13 / 4

00
3 10 3 ( 2)

,
10 50 ( 2)

5
7 7 �=

� = 5

�
$ T� " �U U� �% V� �U U& W

  (49) 

where we have abbreviated: 
3 / 4

00 2

9 3 23040 0.1825.
50 85 4352 95625

7
,

� � � X
�

  (50) 

The constant root 1
007 �  corresponds to the leftmost point of the flip bifurcation curve in the ( , )� 7  plane, while 

(49) represents the flip bifurcation condition (46) in the form ( , , ).7 7 � 5 =�  Substituting this expression of 7  
into (47), we obtain an equation:  

� 	2 ( , , ), , , 0,g 7 � 5 = � 5 = �    (51) 

which, for a fixed value of ,5  is satisfied by the values of �  and =  representing the locus of the points of inter-
section of the flip bifurcation curve with the Hopf bifurcation curve in the ( , )� =  plane. In Figure 1 this locus 
has been drawn in as a thin dashed curve.  
Considering the existence of the locus for large values of ,�  we find that for � L 
  the expression in the left-
hand side of (51) tends to a limit function , ,P5 =  the root of which for 1.25 �  (denoted by )=
  is given below 
together with the corresponding value of 7  (denoted by 7
  and obtained from (49) for = =
�  and ) :� L 
         

1.2 : 0.2991, 1.2231.5 = 7
 
� X X   (52) 
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The flip bifurcation curve and the Hopf bifurcation curve approach each other asymptotically in the ( , )� =  plane 
for � L 
  when .= =
�  It follows from Figure 1 that they do not intersect when ,= =
A  but they do so at a 
finite value of �  when .= =
#  Therefore, the locus of their points of intersection does not exist when .= =
A   

Similarly, in the ( , )� 7  plane the flip bifurcation curve and the Hopf bifurcation curve approach each other 
asymptotically for � L 
  when .7 7
�  It follows from Figure 2 that they do not intersect when ,7 7
#  but 
they do so at a finite value of �  when .7 7
A  Therefore, the locus of their points of intersection does not exist 
when .7 7
#   

Of importance here is also the fact that for 1.25 �  the locus of intersections of the flip bifurcation curve and the 
Hopf bifurcation curve attains its minimum with respect to the parameter �  of capital movement at a considera-
bly large value of .�  Specifically, this minimum occurs at: 

min 249.13 ( 0.662, 0.688).� � = 7� X X X   (53) 

To find the locus of intersections in the ( , )� 7  plane, instead of in the ( , )� =  plane, we can solve (49) for =  and 
substitute the resulting expression: 

00
1 3 / 4

00

10 (1 )
( , , ) ,

500 (1 )( 2) 10 3 ( 2) 3
7 7 �

= 7 � 5
7 7 5 7� 5

�
�

! �� � � " � � �
 (54) 

into (47). We then obtain the following equation which, for a fixed value of ,5  is satisfied by the values of �  
and 7  representing the locus curve in the ( , )� 7  plane: 

� 	2 1, , , ( , , ) 0.g 7 � 5 = 7 � 5 �   (55) 

In Figure 2 the locus has been drawn in as in Figure 1 (thin dashed curve). However, since the maximum value 
of =  allowed in the model is 1, we can substitute 1= �  into (49) to find the following relation representing, for 
a fixed value of ,5  the model restriction 1= D  on the flip bifurcation curve in the ( , )� 7  plane: 

' (

13 / 4

00
3 10 3 ( 2) .
10 50 ( 2)

5
7 7 �

� 5

�
$ T� " �U U< �% V

� �U U& W
  (56) 

For the value 1.25 �  we thus obtain: 
13 / 4

00
3 8 3 15.97240.433628 .
10 ( 40) 3.16579

7 7 �
� �

�
$ T� "

< � X �% V
� �& W

    (57) 

This expression of ,7  with the equality sign, represents the final location of the flip bifurcation curve (corre-
sponding to 1).= �  It follows that the actual locus of intersections of the flip bifurcation curve with the Hopf 
bifurcation curve is only the part of the curve (55) in which (57) is satisfied. In the diagrams of Figure 2 only that 
part of the curve is shown.  

We can now substitute 7  by its lowest possible value, as given by the right-hand side of (56), into (55) to obtain 
an equation: 

*
2 ( , ) 0,g � 5 �   (58) 

giving (for a fixed value of )5  the value of �  at the final point of the actual locus. For 1.25 �  we obtain 
276.65,� X  and the value of 7  at this point is then found from (57) to be 0.491.7 X  Note in Figure 1 that this 

is the value of 7  for the intersection of the flip bifurcation curve with the Hopf bifurcation curve to be at the top 
end point of the locus in the ( , )� =  plane.   

Let us now discuss the implications of the geometrical aspects of the boundary curves of the stability region, 
including consequences on the possibility of occurrence of interregional business cycles. The minimum with 
respect to the parameter �  of the locus of intersections of the flip bifurcation curve with the Hopf bifurcation 
curve in Figures 1 and 2 means that no segment of the curve (47) can be part of the boundary of the stability 
region for 249.13,� A  equivalently that no Hopf bifurcation curve exists, and no business cycles can occur, for 
lower values of .�  For lower values of �  the flip bifurcation curve forms the boundary of the stability region, 
thus period doubling can be expected to be the only mode of asymptotic dynamical behavior of the system when 
exiting the stability region in parameter space.  

The inequalities:  

min, , ,= = � � 7 7
 
# # A   (59) 

represent the threshold for the occurrence of cycles in our model. For ,= =
#  ,7 7
A  and large but finite val-
ues of capital movement ,�  the locus of intersections of the flip bifurcation curve with the Hopf bifurcation 
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curve exists, and cycles occur when exiting the stability region in parameter space through the segment of the 
curve (47) which forms part of the boundary of the stability region for such values of .�  The important differ-
ence between our present flexible exchange rates system and the corresponding fixed exchange rates system 
studied in [3], is that in our present system for cycles to occur sufficient amount of trade is required together with 
high levels of capital movement. 

In Figure 3 we show the occurring cycles for 0.6, 300,= �� �  and 7  as the bifurcation parameter varying 
between 0.627 and 0.629. The cycles are shown in their 1 2( , )Y Y  and exchange rate (ER) versus 1Y  projections. 
The 1 2( , )Y Y  projection in particular shows counter synchronization of regional incomes when interregional cy-
cles appear. Note, also, that when the income of region 1 is sufficiently higher than the income of region 2, then 
the exchange rate is less than 1, that is the currency of region 1 is “stronger” (1 unit of currency of region 2 is < 1 
unit of currency of region 1). However, the occurring cycles are small in amplitude and short-lived as 7  varies.   

  
Figure 3: Interregional cycles for 0.6,= � 300,� � 0.627 0.629,7D D  in 1 2( , )Y Y  and 1( , )Y ER  projections. 

We close this section with the following basic conclusions concerning the enhanced stability of equilibrium 
characterizing our model of flexible exchange rates. From the stability region diagrams it can be seen that high 
levels of capital movement �  do not induce instability of the system for low levels of the speed of adjustment of 
the goods markets 7  (i.e. for prudent reactions by firms); but high levels of 7  induce instability even at rela-
tively low levels of �  (Figure 2). For prudent reactions by firms ( 1)7 A  equilibrium remains stable at high 
levels of capital movement even for high levels of trade transactions =  (Figure 1).   

7 Period doubling and second generation cycles 
We now consider the asymptotic dynamical behavior of the system outside the stability region. For this we em-
ploy numerical simulations of the model mapping (35) – (39) to compute bifurcation and Lyapunov exponent 
diagrams with �  as the bifurcation parameter. We choose parameter cases in which as �  increases stability is 
lost by going through a flip bifurcation, such being the characteristic cases in our model (except for very large 
values of ).�   

Our results for 0.6= �  (see the bottom left-hand diagram of Figure 2 for the relevant stability region), and sam-
ple values of ,7  are shown in Figure 4. As expected period doubling occurs when stability is lost (at: 7.96� X  
for 2,7 �  and 14.71� X  for 1.5).7 �   

 
      

  
    

  
Figure 4: Bifurcation and Lyapunov exponent diagrams for 0.6= �  at: 27 �  (left), 1.57 �  (right). 
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Figure 5: Period-2 cycles for 0.6,= �  2.7 �  

       
   

 

    
 

    

  

Figure 6: Development of the cycles of Figure 5, 1 2( , )Y Y and 1 2( , )K K projections, into chaotic attractors at:      
9.68� � (left)  and 9.76� �  (right / mask-like and heart-like attractors).  

However, in the present case the period doubling process does not develop directly into chaotic behavior. In-
stead, it first develops into an intermediate phase of “second generation”, period-2, cycles as indicated by the 
characteristic flatness of the Lyapunov exponent diagram for 27 �  and �  approximately between 9.25 and 
9.55. A similar situation, for a narrower interval of ,�  is seen to occur for 1.5.7 �  The actual second generation 
cycles occurring for 0.6,= �  2,7 �  and their development into chaotic attractors are shown in Figures 5 and 6.  

8 Concluding remarks 
We presented a five-dimensional discrete two-regional Kaldorian macrodynamic model with flexible exchange 
rates, assuming similar economies of the two regions, and carried out a numerical exploration of its dynamical 
behavior, considering the effects of variation of the three basic parameters, namely the common speed of adjust-
ment of the goods markets ,7  the degree of capital mobility ,�  and the level of trade transactions between the 
regions .=  We employed as our basic tools a grid search method and analytical coefficient criteria for the deter-
mination of the stability of equilibrium region and its boundary curves, the flip bifurcation curve and the Hopf 
bifurcation curve, in two-dimensional sub-sections of the parameter space. We considered the geometrical as-
pects of the boundary curves and of the curve representing the locus of their intersections, and the implications of 
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these aspects on the stability region and the occurrence of period doubling or cycles in the parameter space. Our 
main findings are as follows. 

Compared to the corresponding model of fixed exchange rates considered in a previous paper, our present model 
is characterized by enhanced stability of equilibrium. High levels of capital movement �  do not induce instabil-
ity of the system for low levels of the speed of adjustment of the goods markets 7  (i.e. for prudent reactions by 
firms), although high levels of 7  induce instability even at relatively low levels of .�  For prudent reactions by 
firms ( 1)7 A  equilibrium remains stable at high levels of capital movement even for high levels of trade transac-
tions .=   

Business cycles are generally scarce and short-lived in parameter space, occurring at large values of the degree 
of capital movement .�  We determined the threshold for the occurrence of cycles in the form of restrictions 
described by inequalities that must be satisfied by the parameters ,= 7  and .�  A characteristic difference be-
tween our present flexible exchange rates system and the corresponding fixed exchange rates system studied in 
[3], is that in our present system for cycles to occur sufficient trade is required together with high levels of capi-
tal movement. The importance of trade as a generating factor for business cycles is significantly reduced by the 
flexibility of exchange rates.  

Further, we have considered the effects of variation of two additional parameters, the speed of adaptation 5  of 
the expected exchange rate and the parameter Z  involving government expenditure. We found that the threshold 
for the occurrence of cycles is relaxed, in the sense that cycles occur for larger regions in the basic parameters 
space ( , , ),7 � =  when 5  is increased, and that it is similarly relaxed in the space of the economic interaction 
parameters ( , )� =  when Z  is decreased (details are included in the full version of the paper to be published 
elsewhere). A plausible interpretation of these results is that rapid changes in exchange rates expectations and 
decreased government expenditure are factors contributing to the creation of Hopf bifurcations and interregional 
business cycles.  

It may be commented here concerning the plausibility of the above results and their economic interpretations, 
that these do not contradict intuition and experience and are therefore suggestive of some degree of real world 
relevance of our formulation of the present model of Kaldorian two-regional Macrodynamics under flexible 
exchange rates.   

We also explored the asymptotic dynamical behavior of our system outside the stability of equilibrium region by 
means of numerical simulations resulting in bifurcation and Lyapunov exponent diagrams, and found that in 
several cases of the period doubling process occurring when exiting the stability region in parameter space 
through flip bifurcation, the process first develops into second generation (period 2) cycles. It was noted that 
when exiting the stability region through Hopf bifurcation the occurring cycles exhibit counter synchronization 
of regional incomes. Examples of the occurring first and second generation cycles were given in terms of two-
dimensional projection diagrams. 
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