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Abstract. The paper studies computation models for tasks performed by autonomous mobile robots.
Such tasks can be accomplished by reactive control algorithms. The evolution of reactive control sys-
tems can be described using different models of computation which have as distinguishing feature the
abstraction level of time. Thus, three computation models are defined: the untimed model, the syn-
chronous model and the timed model. It is shown that the clocked-synchronous model of computation
is more appropriate for describing the controller for a parallel parking task.

1 Introduction
The motivation of this paper is to develop computation models for tasks performed by autonomous mobile robots.
Such models can help to analyze the functioning of the associated control algorithms and to study their stability
properties [1]. Reactive control has been successfully applied to autonomous mobile robots and has enabled robotic
vehicles to perform various tasks, such as parallel parking or motion with desirable speed in uncertain environments
[2-4]. Reactive systems receive inputs, react to them by computing outputs and wait for the next inputs to arrive.
Reactive systems correspond to finite state machines which in turn can be represented with the use of Petri nets [5-
8]. The evolution of reactive control systems can be described using different models of computation which have
as distinguishing feature the abstraction level of time. Thus, three computation models are defined: the untimed
model, the synchronous model and the timed model [5].

First, the untimed model of computation is considered. This adopts the simplest timing approach, in which pro-
cesses are modeled as state machines which are connected to each others via signals. Signals transport data values
which do not carry any time information but preserve their order of emission. Values that are emitted first are
assumed to be received first by the receiving process. Second the synchronous model of computation is considered.
This can be based on partition of time either into time slots or into clock cycles. The perfectly synchronous model
assumes that no time advances during the evaluation of a process. Consequently, the results of a computation on
input values are already available in the same cycle. The clocked-synchronous model assumes that every simula-
tion step of a process takes one cycle. Hence the reaction of a process to an input becomes effective in the next
cycle. Third, the timed model of computation is examined which assigns a time stamp to each value communicated
between processes. This allows to model time-related issues in great detail, but it complicates the model and the
task of analysis and simulation.

It will be shown that the clocked-synchronous model of computation is more appropriate for describing the con-
troller for the parallel parking task. Results on the efficiency of the proposed control algorithm have been obtained
in the case of a 4-wheel mobile robot (Coroware CB-WA). This research work will be continued with the detailed
presentation of the experimental implementation of the reactive parking controller on the four wheel robot.

The structure of the paper is as follows: In Section 2 the use of finite state machines and Petri Nets in the modeling
of computation processes is analyzed. In Section 3 the basic elements of the various models of computation
(MoC) are presented and the untimed model of computation is explained. In Section 4 the synchronous model of
computation is introduced. In Section 5 the timed model of computation is presented. In Section 6 the modeling
of a parallel parking controller by a finite state machine is analyzed and the associated untimed, synchronous and
timed models of computation are studied. Finally, in Section 7 concluding remarks are stated.

2 Finite state machines and Petri Nets models
2.1 System modeling with the use of deterministic automata

Automata have been used to model the dynamics of Discrete Event Systems (DES). In that case automata describe
dynamical systems the behavior of which cannot be completely represented by differential equations, because of
the existence of asynchronous events that affect the system’s state. Such systems are usually met in manufacturing,
robotics and in intelligent autonomous vehicles. Usually a DES is described by a finite automaton, which is defined
by the five-tuple [9-12]
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M = (Φ,B,δ ,S,F) (1)

where Φ is a set of discrete states, B is the set of events that enable the transition between states, δ : Φ×B→Φ
is the transitions mapping, and q0 ∈ Φ is the initial state. An example of a DES is depicted in Fig. 1 where
Φ = {E,F,P}, B = {α1,α2,α3,β1,β2,β3}, S = E, S contains the arcs that appear in Fig. 1. At time instant k the
system can be in one of the nodes depicted in the above graph, for instance node i, thus the state of the system is
the vector φ k = [0, · · · ,1, · · · ,0].

The transition between the various states of the automaton are enabled through the events ai, i = 1,2,3, and
βi, i = 1,2. Each event is associated with a transition matrix which in the case of the automaton shown in Fig. 1
becomes [9]

α1 =

⎛⎝0 1 0
0 0 0
0 0 0

⎞⎠ β1 =

⎛⎝0 0 0
1 0 0
0 0 0

⎞⎠ , α2 =

⎛⎝0 0 0
0 0 1
0 0 0

⎞⎠

β2 =

⎛⎝0 0 0
0 0 0
0 1 0

⎞⎠ , α3 =

⎛⎝0 0 1
0 0 0
0 0 0

⎞⎠ , β3 =

⎛⎝0 0 0
0 0 0
1 0 0

⎞⎠
(2)

Thus, if the system is initially is state F = [0,1,0] and event β1 appears then the next state of the DES is state
E = [1,0,0] as shown in the following calculation

(
0 1 0

) ·
⎛⎝0 0 0

1 0 0
0 0 0

⎞⎠ =
(
1 0 0

)
(3)

The properties of reachability, cyclic behavior and asymptotic stability are of importance for the efficient perfor-
mance of the computations modeled by the DES [12].

Figure 1: Modelling of a discrete event system with the use of an automaton

2.2 System modelling with the use of fuzzy automata

The need for non-deterministic finite state machines in the description of robotic and autonomous vehicle con-
trollers is justified as follows [5]: First it may be unknown what the exact effect of a particular event is. The
modeling of the breaking behavior of a vehicle can be used as an example. When the driver steps on the break with
a given force, it will not always have the same effect and decrease the velocity by the same amount. The precise
effect depends on many factors, such as the age of the vehicle, the friction of the tires and the condition of the
road. If one includes all possibilities then a stochastic model of the car’s behavior is obtained. A second situation
where nondeterminism is useful arises when an exact model of the system’s behavior may be complicated and un-
tractable. Since one has to deal with all possibilities when designing or analyzing a vehicle it may be superfluous
to include all details of cause and effect in the model.

Crisp finite state machines are not adequate for applications in which the states and the transitions of a system
are always somewhat uncertain. Subjective human observation, judgement and interpretation invariably play a
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significant role in describing the status of a state, usually not crisp. To overcome these limitations fuzzy finite state
machines have been proposed [7]. In fuzzy finite state machines the possibility of being at a state of the automaton
depicted in Fig. 1, at a time instant k, is denoted by a fuzzy membership function. Assume that the states of the
automaton are φ1,φ2, · · · ,φn, and the associated membership functions at time instant k are [μk

1 ,μk
2 , · · · ,μk

n ]. Then

at time instant k the fuzzy finite state machine is at a state defined by the vector gk = [μk
1 , · · · ,μk

n ]. The transition
matrix between the state of the fuzzy state machine at time instant k and its state at time instant k +1 is given by

α = [αi j]n×n =

⎛⎜⎝α11 · · · α1n
· · · · · · · · ·
· · · · · · · · ·
αn1 · · · αnn

⎞⎟⎠ (4)

A fuzzy discrete event system is represented by a fuzzy automaton where [9,12]: (i) the possibility to find the
automaton at a certain state at time instant k is given by a fuzzy membership function, (ii) the possibility of a
transition between states to take place is also given by a fuzzy membership function, Assume that the states of the
automaton depicted in Fig. 1 are fuzzy and the associated membership functions are

φ̃ = [0.4,0.8,0] (5)

It is also assumed that the fuzzy event α̃1 is given by the transition matrix

α̃1 =

⎛⎝0.1 0.9 0.1
0.2 0.1 0.2
0 0.1 0.1

⎞⎠ (6)

i.e. again it is most likely to have a transition from state E to state F . Then using the max-product inference one
has

φ̃◦α̃1 = [0.4,0.8,0]◦
⎛⎝0.1 0.9 0.1

0.1 0.1 0.1
0 0.1 0.1

⎞⎠ =
(
0.08 0.36 0.08

)
(7)

A typical definition of a fuzzy automaton is the five-tuple M̃ = (Φ̃, B̃, δ̃ , s̃, F̃), where

• Φ̃ is the finite set of fuzzy states. A membership value μ(φi) ∈ [0,1] is assigned to each state.

• B̃ is the set of inputs where each input has a membership function μ(bi) ∈ [0,1].

• δ̃ : Φ×B → Φ is the set of fuzzy transitions, where a membership function μ(δ̃ ) ∈ [0,1] is associated with
each transition from state φi to state φ j.

• s̃ is the fuzzy start state.

• F̃ ⊂ Φ̃ is the set of fuzzy final states.

2.3 Modeling of event-driven systems with the use of Petri-Nets

Models based on finite state machines focus on the state of a system and the observable input-output behavior.
They are not well suited to studying the interaction of concurrently active parts of a system and the combined
realization behavior of distributed parallel systems. To address issues of concurrency and synchronization state
machines are generalized into a model of communicating, concurrent state machines. Petri Nets make suitable the
study of concurrency in finite state machines. The means of communication is a token, which does not contain any
data. A Petri Net is described by the five-tuple

PN = (P,T,A,W,M0) (8)

where

P = {p1, p2, · · · , pn} is a finite set of place
T = {t1, t2, · · · , tm} is a finite set of transitions
A ⊂ (P×T )∪(T×P) is a set of arcs that connect positions to transitions
W : A→R+ is an arc weight function (represented with numbers that label the arcs)
M0 : P→N is the initial marking (initial number of tokens in places)
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The Petri Net structure is N = {P,T,F,W} so PN = (M,W0). The expression PN = (N,M0) is usually referred as
general Petri Net. It should also be noted that marked graphs and state machines are special cases of Petri Nets. A
Petri-Net model that describes the non-deterministic velocity controller of a mobile robot is shown in Fig. 2 [12].

Figure 2: A Petri Net model with initial marking

A qualitative description for the Petri Net of Fig. 2 is as follows: The vector [ek,Δek] describes the velocity error
of a mobile robot (ek = vk − vd

k : difference between the current value of the velocity vk and the desirable value

vd
k ). The velocity is controlled by incremental changes (acceleration or deceleration during a computation cycle)

which is denoted by the transition ti of the state machine. Such a dynamic model has a monotonous input-output
behaviour (v̇ = a(t), or vk+1 = vk + a, i.e. the longer acceleration is applied to the model the larger the vehicle’s
speed becomes). Using an appropriate sequence of control events (accelerations/decelerations) as defined by the
transitions of the Petri Net of Fig. 2, and by diminishing the acceleration a every time the sign of ek·ek−1 changes,
one can succeed to keep the error state vector in the quarter-plane ekΔek < 0, which means that finally the velocity
error converges to 0.

3 Basic terms in models of computation
3.1 Models of Computation (MoC)

The computation programs which substantiate certain tasks in autonomous vehicle operation are denoted with
the term process. In all models of computation events are the elementary units of information exchange between
processes, or between the internal states of a process. Processes receive or consume events, and they send or emit
events. The medium through which events are communicated from one process to the other is called signal. A
signal can be potentially an infinite sequence of events. The activity of each process is divided into evaluation
cycles. In each evaluation cycle a process receives inputs and produces outputs. A process is a software that
performs specific computations and is usually represented by a finite state machine, or equivalently by a Petri Net.
A process partitions its inputs and outputs into subsequences which correspond to evaluation cycles. For instance
in the untimed and synchronous models of computation only one event takes place during an evaluation cycle while
in the timed model of computation multiple events can take place during the evaluation cycle. Process constructors
are parametrizable templates that instantiate processes. Through a process constructor one can define the structure
of the state machine that represents the performed computation, as well as the number of inputs and outputs. A
Model of Computation (MoC) is a process, or set of processes or process networks that can be generated by certain
process constructors [5].

A MoC is primarily characterized by the abstraction level of time it uses. Thus one has (i) the untimed MoC in
which no time measurement is associated with the arrival of input events and the production of output events by
the process, (ii) the synchronous MoC in which only one input event appears at a specific time slot and only one
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output event is also recorded at a certain time slot [13,14], (iii) the timed model of computation in which several
input and output events can appear at a specific time slot.

3.2 Events and signals in models of computation

Untimed events Ė are just values without further information, Ė = V . Synchronous events Ē include a pseudovalue
� (denoted as "absent") in addition to the normal values. Hence Ē = V ∪{�}. Timed events Ê are identical to
synchronous events. Intuitively, timed events occur at much finer granularity than synchronous events, for instance
at a nanoseconds time period. In contrast synchronous events are assigned to abstract time slots or clock cycles.
This model of events and time can accommodate discrete time models.

Signals are sequences of events. Sequences are ordered, and one uses subscripts such as ei to denote the i-th event
in a signal. For example, a signal may be written as < e0,e1,e2 >. In general, signals can be finite or infinite
sequences of events, and S is the set of all signals. One can distinguish between three different kinds of singals.
Ṡ, S̄ and Ŝ denote the untimed, synchronous and timed signal sets, and ṡ, s̄ and ŝ designate individual untimed,
synchronous and timed signals (see Fig. 3).

Figure 3: Processes p1 and p2 are connected by the untimed signal ṡ1. Processes p3 and p4 are connected by the
synchronous signal s̄2. Processes p5 and p6 are connected by the timed signal ŝ3.

3.3 Process properties

Important properties of processes are monotonicity and continuity. A process p : S→S is monotonic if

s1 ⊆ s2⇒p(s1) ⊆ s2 p(s2) (9)

Monotonicity means that receiving more input can only provoke a process to generate more output, but does not
change the already emitted output. This means that a process can start computing before all the input is available
because new input will only add to the previously created output, but not change it.

Continuity, guarantees that infinite output signals can be gradually approximated. A monotonic process p is con-
tinuous if

p(�C) = �p(C) (:= �{p(s)|s∈C}) (10)

for every chain C⊆S. Moreover, a process with two or more inputs, i.e. receiving measurements from two or more
sensors is sequential if the inputs are not sequentially processed. This means that if the one sensor stops providing
measurements the controller’s functioning will be blocked. Finally, it is noted that processes can be combined into
a process network through parallel composition, sequential composition and feedback operators.

3.4 The untimed Model of Computation

An untimed model of computation (MoC) is a 2-tuple MoC = (C,O), where C is the set of the constructors of
the process, each of which, when given constructor specific parameters instantiates the process. O is a set of
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process composition operators (if needed to combine processes into a process network), each of which when
given processes as arguments instantiates a new process. The created process is a state machine which functions
according to the basic assumption of the untimed computation, i.e. that no time measurement is associated with
the arrival of input events or the production of output events by the process.

4 Synchronous models of computation
4.1 Perfect synchrony

Synchronous models of computation divide the time axis into slots. The evaluation cycle of the process lasts
exactly one time slot. There are two synchronous MoC. In the perfectly synchronous MoC the output events of a
process occur in the same time slot as the corresponding input events. This leads to interesting situations when an
output event of a process becomes also input event of the same process in the same time slot and in this way it
contributes to its own creation. This situation corresponds to a set of recursive equations.

The perfect synchrony hypothesis assumes that neither computation, nor communication takes time. In a perfectly
synchronous model, inputs arrive in a particular order, and even though they do not carry information about the
concrete time instances when this happens (unlike the timed model of computation), one can observe that event u1

arrives at the system before u2.

Process P reacts to the events u1 and v1 immediately, by computing outputs u
′′
1 and v

′′
1 and then it waits for the

next inputs. Thus one can observe a sequence of cycles (read inputs, compute outputs). Since, neither computation

nor communication takes time, the outputs occur at exactly the same time as the inputs. Thus u1,v1,u
′′
1,v

′′
1 and

all corresponding intermediate events u
′
1,v

′
1 occur simultaneously. Thus, the time instances of the occurrence of

the output events are completely determined by the time instances of the occurrence of the input events. Reactive
systems receive inputs, react to them by computing outputs and wait for the next inputs to arrive.

Synchronous processes have two specific characteristics. First, all synchronous processes consume and produce
exactly one event one event on each input or output in each evaluation cycle. Second, events can take the special
value � which denotes the absence of an event. In this way one can define synchronous events Ē and synchronous
signals S̄. The synchronous process process constructors substantiate processes which are able to deal with syn-
chronous events and signals.

In the perfectly synchromous MoC the process constructor creates a process that operates according to the perfect
synchrony hypothesis, i.e that neither computation, not communication takes time and thus for a certain input event
occurring at the i-th time slot the associated output event takes also place at the same time slot.

4.2 The clocked-synchronous model of computation

In the clocked synchronous MoC every process incurs a delay from an input to an output event. The delay is
equivalent to the duration of the evaluation cycle. Consequently, feedback loops loose their difficulty because
there is always a delay of at least one evaluation cycle in each loop and events cannot affect their own generation.

On the other hand, in the clocked synchronous MoC the clocked synchronous hypothesis holds: there is a global
clock signal controlling the start of each computation in the system. Communication, takes no time, and compu-
tation takes one clock cycle. To describe clocked synchronous processes a delay function Δ is considered, which
delays each input by one cycle, as shown in Fig. 4.

In the clocked synchromous MoC the process constructor creates a process that operates according to the clocked
synchronous hypothesis, i.e that communication takes no time while computation takes one clock cycle and thus
for a certain input event occurring at the i-th time slot the associated output event takes also place at the next time
slot. A delay Δ between input and output events is thus recorded.

5 Timed models of computation
5.1 Basic properties in the timed MoC

The timed MoC is an elaboration of the synchronous MoC. The differences form the synchronous MoC are the
following: (i) the partition of the time axis is much finer, and events may occur at each nanosecond or picosecond
rather than every clock cycle (each clock cycle may contain several events). However, the physical time unit is not
part of the MoC, (ii) Processes can receive as input and emit as output any number of events during an evaluation
(clock) cycle. From this point of view the timed MoC is closer to the untimed than to the synchronous MoC, (iii)
processes must comply with the causality constraint, which means that those output events which are a reaction to
input events cannot occur before these input events. When a process consumes a number of input events in a given
evaluation cycle, the first output event of this evaluation cycle is emitted not earlier than the latest input event of
this cycle. As a consequence a delay period is associated with each evaluation cycle of the process.
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Figure 4: A simple clocked synchronous process P

Using a timed MoC reflects the intention of capturing the timing behavior of physical entities accurately without
simplifying assumptions. The only simplification concerns the accuracy of the time representation (unit of the
physical time).

5.2 The causality constraint in the timed MoC

A process constructor for the timed MoC creates a process which functions according to the constraint that output
events cannot occur before the input events of the same evaluation cycle. This is achieved by enforcing an equal
number of input and output events for each evaluation cycle and by keeping a sequence of absent events. Since
the signals also represent the progression of time, the appearance of absent events at the outputs corresponds to an
initial delay of the process in reacting to the inputs. Moreover, each event is annotated with its own time tag which
annotates the time of its occurrence (with reference to a global or local timer).

6 Simulation and experimental tests
6.1 Description of the parking algorithm

Parallel parking is the placement of a vehicle in parallel to its moving direction in a confined space which is very
little wider than the vehicle’s dimensions. The mobile robot can be described as a four-wheel vehicle, the front
wheels of which are used to turn its direction in an angle up to 45o in both directions. The vehicle model is shown
in Fig. 5.

Figure 5: The model of the robotic vehicle

The position of the vehicle is described by the coordinates (x,y) of the center of its rear axis and its direction is
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given by the angle φ between the x-axis and the axis of the direction of the vehicle. The steering angle θ and the
speed u are considered to be the inputs of the system. The continuous-time equations that describe the vehicle’s
motion are the following:

ẋ = cos(θ)cos(φ)v
ψ̇ = cos(θ)sin(φ)v
φ̇ = sin(θ) v

l

(11)

The parking space is described by a rectangle of dimensions α and β (see Fig. 2). The proposed parallel parking
algorithm can be decomposed into the following steps [2]:

Figure 6: Parking place and vehicle

Step 1: The vehicle is set parallel and ahead of the parking area.

Step 2: The vehicle backtracks to a certain point and then the front wheels are turned so that the vehicle moves
towards the parking area until it reaches a certain angle of approach.

Step 3: As long as the vehicle stays inside the boundaries of the parking place, the vehicle continues to backtrack.

Step 4: When the vehicle reaches the boundaries, the front wheels are turned the other way round and the direction
of movement also changes.

Step 5: Step 3 is repeated until the vehicle is found in a direction parallel to the desired one, but inside the
limitations of the parking place. The parking is then completed.

The parking place is defined by a rectangle as shown in Fig.2. It is assumed that the car is initially on the right
of the parking place with y0 = h and x0 = 0. The parking manoeuvre is parameterized by φre f and xre f , which are
given by:

sin(φre f ) = a
B

xre f = 1
tan(φre f ) (h+ α

2 − L
tan(θ) −Acos(φre f ))+ 1

sin(φre f ) (
A
2 + L

tan(θ) )
(12)

In the above equation

α stands for the width of the parking area, β stands for the length of the parking area, A stands for the width of
the car, B stands for the total length of the car, h describes the initial y position of the center of the rear axis of the
car (i.e. y0 = h), L is the length of the wheel-base of the car, φre f is the initial angle approach of the parking area
which is defined by the transversal axis of the vehicle and the x-axis, xre f is the starting x position of the center of
the rear axis of the car.

The manoeuvres’ sequence is demonstrated in Fig. 7. The equations defining xre f and φre f can be interpreted as
follows: the aim is for the car to enter the parking place with the highest angle possible, such that the right front
part of the car remains within the parking place. xre f is selected such that, after manoeuvres (K0), (K1) and (K2)
are completed, the vehicle reaches the left border of the parking area with its left rear corner, in order to have as
much as room as possible to re-orient.
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The parking manoeuvres consist of the following steps: the vehicle backs up (K0) until the back of the car reaches
xre f , it turns right (K1) until the orientation overshoots φre f , then it backs up (K2) until the rear of the car touches
the left or the lower bound of the parking area. Finally, the vehicle re-orients by repeating the following sequence:
(i) if the rear part touches the border of the parking place (K3), it drives forward and turns right (K4), (ii) if the
front part touches the border (K5), or if the left rear corner of the car reaches the upper limit of the parking place,
the vehicle backs up (K6). As soon as the vehicle becomes parallel to the desirable axis φd = 0o, the parking
manoeuvres stop.

6.2 Modeling of the parking controller as a finite state machine

To implement a change of the angle of the steering wheel an increment ±Δθ is considered, while to implement a
change of the vehicle’s velocity an increment ±Δv can be considered. The vehicle is set parallel and ahead of the
parking place with its rear far ahead from point xre f . The vehicle backtracks to the point xre f and then it turns the
front wheels so as to move towards the parking place, until it reaches the angle of approach φre f . The velocity v of
the vehicle is kept constant during the parking manoeuvres and its sign is changed each time the vehicle changes
its direction of motion. Thus, the control input is taken to be the angle of the steering wheel. The error ek = φk −φd
is defined and its derivative Δek is also considered. The parking control manoeuvres can be summarized in the
following rules:

R1: IF sgn(ekΔek) < 0 AND the previous control action was to increase θ THEN keep on increasing θ .

R2: IF sgn(ekΔek) < 0 AND the previous control action was to decrease θ THEN keep on decreasing.

R3: IF sgn(ekΔek) > 0 AND the previous control action was to increase θ THEN set θ = 0o and decrease θ .

R4: IF sgn(ekΔek) > 0 AND the previous control action was to decrease θ , THEN set θ = 0o and increase θ .

R5: IF the vehicle reaches the FRONT or the INSIDE boundary, THEN increase Δθ and change the sign of velocity
sgn(vk).

R6: IF the vehicle reaches the REAR or the OUTSIDE boundary, THEN increase Δθ and change the sign of
velocity sgn(vk).

The proposed control algorithm is modeled as a finite state machine and can be represented with the use of a Petri
Net. At a next stage, using an appropriate model of abstraction the associated untimed computation model can be
derived. The finite state machine that models the control algorithm consists of the following places and transitions:

p1 : ek > 0 and Δek > 0 and the last control action is increase
p2 : ek > 0 and Δek > 0 and the last control action is decrease
p3 : ek > 0 and Δek < 0 and the last control action is increase
p4 : ek > 0 and Δek < 0 and the last control action is decrease
p5 : ek < 0 and Δek > 0 and the last control action is increase
p6 : ek < 0 and Δek > 0 and the last control action is decrease
p7 : ek < 0 and Δek < 0 and the last control action is increase
p8 : ek < 0 and Δek < 0 and the last control action is decrease

(13)

The transitions associated with the above states are:

t1 : decrease t5 : increase t9 : increase
t2 : decrease t6 : decrease t10 : decrease
t3 : increase t7 : decrease t11 : increase
t4 : decrease t8 : increase t12 : decrease

(14)

The Petri-Net diagram given in Fig. 8 describes the dynamics of the car-controller ensemble and can be initialized
randomly at any one of the states p1 − p4 or p5 − p8. This means that the initial position error ek and the velocity
error Δek of the car, as well as the initial control action αi{increase,decrease} can be chosen arbitrarily.

A token is placed at the starting place and at every iteration of the control algorithm (i.e. each time a new control
action αi is applied) the token moves to a different place. The transition between different places is enabled through
the transitions (control actions) t1, t2, t3, t4, t9, t10 and t5, t6, t7, t8, t11, t12. There are also inactive transitions such as
t3, t4, t5 and t6.

6.3 Convergence analysis of the parking control algorithm

The following notation will be used: (i) the deviation from the desirable angle is denoted by the error function
e = φ −φd , (ii) the two control actions are denoted as α1=increase, and α2=decrease.
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Figure 7: sequence of maneuvers for reactive parallel parking, performed by the autonomous mobile robot

Lemma 1: The error function e = f (αi) is monotone as long as the same control action is applied.

Proof : A time step equal to 1 clock cycle is assumed, and using Eq. (11) the following equation is considered

Δφk = sin(θk)
vk

l
(15)

where, Δφk = φk−φk−1 is the change of the orientation angle φk. Moreover, θk ∈ [θmax,θmax] = [−θmax,0]∪[0,θmax]
and it is assumed that no direct transition from [−θmax,0] to [0,θmax] or vice versa is permitted (i.e. as long as the
same control action αi, i = 1,2 is applied, the steering angle remains either in [−θmax,0] or in [0,θmax]). Finally,
without loss of generality it is assumed that the vehicle moves in the forward direction. Thus as long as the same
control action is repeated two cases can be distinguished:

IF θk ∈ [−θmax,0]⇒sin(θk) < 0, Δek < 0⇒φk,ek, decrease monotonically (16)

IF θk ∈ [0,θmax]⇒sin(θk) > 0, Δek > 0⇒φk,ek, increase monotonically (17)

Lemma 2: Transitions between p1 and p2 or p7 and p8 are not possible owing to setting the steering angle θ = 0o

each time a faulty control action is applied.

Proof: Without loss of generality, it is assumed that the system is found in state p1 with ek > 0 and Δek = Δφk =
sin(θk)

vk
l > 0, and vk > 0. Then sin(θk) > 0, (i.e. θk ∈ [0,θmax]). According to rule (R3) θk will be set to θk = 0o

and a decrease of θk will follow (i.e. now θk ∈ [−θmax,0]), which implies Δek = Δφk = sin(θk)
vk
l < 0. Hence

now one gets ek > 0 and Δek < 0 and the previous control action is decrease, i.e. the system goes into state p4.
Therefore, the transition from p1 to p2 is not possible. The non-feasibility of the inverse transition from p2 to p1,
as well as between p7 and p8 can be shown in a similar way.

Lemma 3: The states p3, p4 and p5, p6 of the automaton that models the parking controller operate as sinks. The
transitions t3, t4 and t5, t6 remain inactive.

Proof : Without loss of generality, it is assumed that the system is found in state p4 (either as an initial state or
moving there from state p1, according to Lemma 2). The possible transitions associated with this state are: (i) t4
which leads to position p2, (ii) t10 which leads back to position p4. Both transitions t4 and t10 indicate a ’decrease’
control action. This means that, starting from state p4 the decrease control action is maintained. Therefore,
according to Lemma 1 the error function ek = f (αi) is a monotonous one (i.e. the sign of Δek is not permitted to
change).

Since state p2 corresponds to ė with opposite sign of p4 the state from p4 to p2 is banned. Consequently, state p4

operates as sink and transition t4 is an inactive one (and is denoted in the Petri Net diagram with a dashed line).
Similarly, it can be proved that the states p3, p5 and p6 are sinks and that the transitions t3, t5 and t6 remain inactive.
Now, the following theorem can be stated:

361

Proceedings MATHMOD 09 Vienna - Full Papers CD Volume



Figure 8: Finite state machine describing the reactive controller

Theorem The proposed automaton assures the convergence of the robotic vehicle to the desirable final position
φd = 0o.

Proof : Using the results of Lemma 3, it becomes clear that the vehicle will always end to one of the states p3,
p4, p5 or p6, which belong to the semi-plane ekΔek < 0. As long as the system remains on semi-plane eė it is
assured that the Lyapunov function V = 1

2 e2
k is negative definite. Thus limk→∞ek = 0 and the system converges to

the desirable angle φd = 0o.

6.4 A model of computation for the parallel parking controller

The clocked synchronous model of computation is directly applicable to the previously described Petri Net model
(process) of the parking controller. Time is divided into time slots. The events received as inputs by the finite state
machine at time slot k are: the sign of the velocity vk, the sign of the orientation error ek = φk − φd , the sign of
the first derivative of the orientation error ėk, and the previous control action αk

i , i = 1,2 which can be an increase
or a decrease of the control signal. The process performs internal state transition and the output is generated (the
process reacts to the received input). The output consists of the new sign of the velocity vk+1, the new value of the
orientation error ek+1, the new value of the first derivative of the orientation error ėk+1, and the new value of the
of the control signal αk+1

i , i = 1,2. The computation takes place into one time slot (evaluation cycle), so between
the input and the output of the automaton there is a time delay denoted by Δ. Each time slot corresponds to only
one input set and only to one output set. The parking process is monotonous: the more input it receives from the
orientation sensors the greater the change of the vehicle’s orientation becomes. Absent input and output events can
also appear during a time slot. The parking process is also continuous: after certain evaluation cycles (time slots)
the orientation of the vehicle will have practically converged to the desirable value φd = 0, therefore the infinite
output signal can be approximated by a finite one. The parking process is also sequential. If the velocity or the
orientation sensor stops to give input to the process then the computation of the procedure will be blocked. If
the parking controller (automaton) is connected to a different process, for instance an automaton that controls the
vehicles velocity then a process network is generated. Several tasks in the operation of the intelligent vehicle can
be modeled as processes and thus the overall functioning will be described by a process of higher complexity.

The use of the perfectly synchronous model of computation for the parking controller is not convenient since
receiving as input and giving as output the same type of events (velocity v, the orientation error e, first derivative of
the orientation error ė, and new value of the of the control signal αi, i = 1,2) would result in a recursive equation
that would constrain the values of all the involved events.

Using the timed model of computation to describe the parking process means that the granularity of time is much
finer and events occur in every nanosecond or picosecond rather than every clock cycle. There is no obvious
reason for adopting the timed model of computation since measurements from the vehicle’s velocity and orientation
sensors can be obtained at a sampling period that is not of the nanosecond order. There is also no need to used a
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MoC which considers multiple events in the same evaluation cycle since the evaluation cycle has to produce one
signle event which is the vehicle’s control signal. The same comments holds for the untimed MoC.

7 Conclusions
The paper has studied the suitability of different models of computation for the design of a reactive controller
that enables mobile robots to perform the parallel parking task. The paper’s results can be generalized in the
design of reactive controllers for several tasks performed by intelligent robots and intelligent vehicles. Reactive
systems receive inputs, react to them by computing outputs and wait for the next inputs to arrive. Reactive systems
correspond to finite state machines which in turn can be represented with the use of Petri nets. Three different
models of computation have been examined: the untimed, the synchronous and the timed MoC.

First, the untimed model of computation was analyzed. The parking controller (process) was modeled as state
machine in which events do not carry any time information but preserve their order of emission. Second the
synchronous model of computation was considered. This can be based on partition of time either into time slots
or into clock cycles. The perfectly synchronous model assumes that no time advances during the evaluation of a
process. Consequently, the results of a computation on input values is already available in the same cycle. The
clocked-synchronous model assumes that every simulation of a process takes one cycle. Hence the reaction of
a process to an input becomes effective in the next cycle. Third, the timed model of computation was examined
which assigns a time stamp to each value communicated between processes. This allows to model time-related
issues in great detail, but it complicates the model and the task of analysis and simulation.

It was shown that the synchronous model of computation is more appropriate for describing the controller for the
parallel parking task. Results on the efficiency of the proposed control algorithm have been obtained with the use
of a 4-wheel mobile robot (Coroware CB-WA). This research work will be continued with the detailed presentation
of the experimental implementation of the reactive parking controller on the 4-wheel robot.
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