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Abstract. ARGESIM started in 1990 the series Comparison of Simulation Software in the journal Simulation 
News Europe (SNE). These software comparisons developed towards benchmarks not only for simulation tools 
but also for modelling tools and for modelling techniques and modelling approaches.  
The solutions allow comparisons of different modelling approaches, of features of simulators, of development of 
simulators, etc. Furthermore, the solutions – many of them with source codes – may be used as examples in 
simulation courses, etc. The ARGESIM Comparisons have proven a big success: up to now 291 solutions have 
been published in SNE, and the comparison models are used worldwide as examples and benchmarks in teach-
ing. 
It has turned out, that the ARGESIM Comparisons are a valuable source for demos, exercises, or benchmark 
studies in education on modelling and simulation. As the comparisons tend towards modelling approaches, they 
can be used not only in simulation software classes, but also in more or less general classes on modelling in 
natural sciences, in computer science and computer engineering, etc.  
This contribution first gives an overview on comparisons and benchmarks for modelling and simulation, follow-
ing by a presentation of the ARGESIM Comparisons. Then the extension of the comparisons necessary for edu-
cation in modelling is discussed: information on modelling procedure and information on background of the 
application area. This education project is documented by two physical comparisons, C1 ‘Lithium Cluster Dy-
namics’, dealing with formation and decay of molecule clusters during electron bombardment, and C12 ‘Colli-
sion of Spheres’ representing the dynamics and impact of spheres in a row. 
 
1.  Evaluation, Benchmarks and Comparisons for Modelling and Simulation 
Modelling and simulation has become the third pillar of gaining knowledge, replacing or supporting essentially 
the classic pillars theory and experiment. Modelling and simulation of a process makes use of a simulation soft-
ware, and quality of results and investigation time depend dramatically on the choice of the most appropriate 
simulator. Consequently, bases for this choice or at least serious hints are necessary. 
1.1 General Evaluation 
Special hints for the choice of a simulator depend substantially on the present time. If a publication with such 
hints is published, it is already obsolete. Consequently, only general hints can be given, and methods can be 
shown, how to compare features of simulators and approaches to modelling and simulation. 
The following categories for evaluating software are important and give general hints: 
• Flexibility to model a variety of systems 
• Hierarchical modelling structures, modelling libraries 
• Different modelling approaches 
• Debugging aids, execution speed, links 
• Support for animation and run time graphics 
• Appropriate statistical capabilities random number generation, input probability distributions, output analysis, experimen-

tal design 
• Numerical capabilities: ODE and DAE solvers, Jacobian calculation, eigenvalue analysis, optimisation, etc. 
• Symbolical capabilities: non-causal modelling, index reduction, sensivity analysis 
 

Banks ([1]) gives also some warnings, like ‘Execution speed is really important, because also development time 
counts’, or ‘Beware of advertising claims and demonstrations’, or ‘Beware of checklists with yes and no as the 
entries for features’.  
1.2 Feature Comparisons and Benchmarking 
It is evident, that the choice of a simulator must be based on the knowledge of the features of a simulator for the 
planned simulation project. It is necessary to get known, how the simulator works with the planned project or 
with a similar and analogue process. This leads to the necessity to compare simulation software on a more or less 
standardised basis. In the 1980s, in general two methods for comparing simulation software were developed.  
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The Checklist Method listed desired features, and for each simulator ‘yes’ or ‘no’ entries were put in the lists 
(feature comparisons). There are two major disadvantages: first, very often it is important, how a particular fea-
ture is implemented, and not the existence itself; second, such checklists are becoming obsolete very quickly. 
Nowadays the development cycle for a new release of simulation software is less than two years, so such a 
checklist must become obsolete in very short time. The checklist method may be seen as formalisation of a list of 
special hints for choosing a simulator, and, as given before, it is not the best method. 
The Benchmark Method makes use of so-called benchmarks. The term benchmark may have different meanings; 
in general a benchmark is a more or less normalised test of the quality of product, of a process, etc. Benchmark-
ing means, measuring and comparing products like bicycles or software, in order to choose the most appropriate 
product for a certain purpose. In modelling and simulation, benchmarks like PHYSBE, Pilot Ejection, etc. – are 
well known. They check certain features of simulators, based on fixed models with defined experiments. These 
benchmarks are complex, so that it takes time, if more simulators have to be benchmarked for a certain purpose. 
Until the midst of the nineties, benchmarks for general purpose simulation software were up-to-date. In the last 
ten years the emphasis of benchmarking has shifted towards special purpose simulators, like wastewater treat-
ment processes, or performance modelling of networks ([2], [3]). Especially in process simulation and in power 
plant simulation there was a claim for standardised benchmarking. Up to now, benchmarks are not officially 
standardised (ISO), industrial standards are given e.g. by SPEC benchmarks. Benchmarks may be restricted also 
only to a certain class of problems or applications, e.g. on hybrid systems. At the web here a lot of sources can 
be found, which interestingly link to the ARGESIM Comparisons. 
1.3 Choice by Decision-Support 
Another possibility is to standardise and to automatise the choice based on decision support software. From 1998 
on, at Brunel University a decision support tool called SimSelect was developed ([4]), that provides a support to 
the users when selecting simulation software. Following a specification of user's requirements, the system que-
ries a database and finds a simulation package as well as alternatives suitable to the user. The problem with this 
system is maintenance, and the quality of data provided by distributor of simulation software. 
1.4 ARGESIM Comparisons.  
At Vienna University of Technology, in 1990 comparisons for simulation software were set up, which try to 
overcome the disadvantages of checklists on the one side, and the complexity of benchmarks on the other side.  
These comparisons, the ARGESIM Comparisons of Modelling and Simulation Techniques and Tools are pub-
lished in the journal SNE - Simulation News Europe. These software comparisons developed towards small 
benchmarks not only for simulation tools but also for modelling tools and for modelling techniques. Further-
more, the solutions – many of them with source codes – may be used as examples in simulation courses, etc. 
Details are given in the next section. 
1.5 Special Benchmarks 
Frome time to time special benchmarks appear. They are related to certain events or certain occasions. Elder 
simulationists may remember the Coffeepot Benchmark, set up by R. Huntsinger on occasion of bad coffee at a 
simulation conference. Unfortunately this benchmark was not documented officially. 
Another special benchmark, the MATHMOD Yo-Yo Benchmark was initiated at the 4th MATHMOD Confer-
ence in Vienna. Participants had opportunity to train their skilfulness with a real yo-yo (a promotion gadget). On 
occasion of 6th MATHMOD Conference Vienna (February 2006) the Yo-Yo Benchmark is published officially. 
This benchmarks checks hybrid features, state events and mechanical modelling. A definition for the MATH-
MOD Yo-Yo Simulation Challenge is published in SNE 44/45 [7]. 
 
2. The ARGESIM Comparisons / Benchmarks on Simulation Tools and Modelling Approaches 
ARGESIM started in 1990 the series Comparison of Simulation Software in the journal Simulation News Europe 
(SNE). These software comparisons developed towards benchmarks not only for simulation tools but also for 
modelling tools and for modelling techniques and modelling approaches.  
The new comparisons C16 Restaurant Business Dynamics, C17 Spatial Dynamics of Epidemic, C18 Classical vs. 
Neural Net Models, and C19 Ground Water Flow  address also non-classical modelling techniques, like agent-
based simulation, neural nets and cellular automata. They can be analysed by various software systems, not only 
by simulation systems. Furthermore, they underline the importance of spatial dynamics, coupled with temporal 
dynamics.  
The solutions allow comparisons of different modelling approaches, of features of simulators, of development of 
simulators, etc. Furthermore, the solutions – many of them with source codes – may be used as examples in 
simulation courses, etc.  
The ARGESIM Comparisons have proven a big success: up to now 291 solutions have been published in SNE, 
and the comparison models are used worldwide as examples and benchmarks in teaching. 
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2.1 Development of the Comparisons 
ARGESIM, the Working group Simulation at Vienna University of Technology takes care on definition of these 
comparisons, on publication of the solutions and of evaluation of the solutions. Since 2005, work on a data-based 
driven evaluation and classification is going on, to be presented in a new ARGESIM web server (end 2006). 
The principle idea of the ARGESIM Comparisons is a mixture of a general simple comparison of features within 
‘yes / no’ – tables and the well-known benchmark problems, which are relatively big (like PHYSBE). The AR-
GESIM Comparisons are based on relatively simple, easily comprehensible processes. Different modelling tech-
niques and their implementation as well as features of modelling and experimentation within simulators, also 
with respect to application area, are compared.  
The comparisons solutions have to consist of two parts. The first part is the description of the model and of the 
modelling procedure with the simulator used, and the second parts has to present the procedure and the results of 
three so-called tasks, which are experiments with the model – from simple to complex. 
The comparisons started in 1990, and since that time there have taken place new developments in software and 
algorithms. Consequently also the comparisons developed further on, from comparisons of simulation software 
towards comparisons of modelling and simulation techniques and tools. This development is based on following 
facts:  
• Nowadays different modelling approaches are offered by simulators – it makes sense to work on different 

solutions with the same simulator.  
• The paradigm of Classes and Objects has changed software engineering dramatically. Also in modelling and 

simulation OO approaches give better insight into structures. Consequently, OO approaches may give better 
insight into the modelling procedure – it makes sense to compare classical and OO approaches. 

• Hybrid approaches become more and more important; and as simulators offer environments with complex 
features, hybrid approaches can now be set up easily. Hybrid processes may be tackled by different hybrid 
modelling structures – it makes sense to compare these approaches, from total hybrid decoupling of models 
until complete overall models. 

• Symbolic computation is an alternative to analysis in the time domain. Nowadays Computer Algebra  
Systems can analyse also nonlinear systems and can handle complex semi-numerical tasks and pure numeri-
cal tasks. Furthermore, they usually offer a very good environment for experimenting with models. It makes 
sense, to include Computer Algebra Systems, and to specify also tasks with analytical background. 

• For modelling and simulation of discrete processes, not only classical discrete simulation systems, based on 
DEVS, can be used. It makes sense to look also for different or alternative approaches, like Petri nets and 
Markov chains, and to make use also general statistical tools and environments. Furthermore, in the OO 
world of Java a lot of libraries for discrete process modelling are available, which start to compete with  
classical simulators. 

• The classic basis of continuous modelling and simulation was analysis and simulation in the time domain, 
and spatial dynamics was shifted to the world of finite differences, finite volume, and finite elements.  
Nowadays it is necessary to combine these “different” worlds by “re-considering” the couples temporal and 
spatial dynamics.  
Consequently, it makes sense to study the different approaches for incorporating also spatial behaviour in the 
ARGESIM Comparisons. 

• Although non-classical modelling techniques did not replace the classical ODEs, DAEs, and PDEs,  
alternative methods like cellular automata, agent-based approaches, and fuzzy and neural models  
have become very important for certain classes of problems.  
Consequently it makes sense, to extend the range of the ARGESIM Comparisons also towards these  
alternative approaches and to compare them with classical ones. 

• And last but not least, many simulators have been developed continuously. So it makes sense to solve a  
comparison from time to time with the new version of a specific simulator, to show the advances and new 
features of the system. 

 
2.2 Comparison Definitions, Simulation Tasks, and Problems to be Investigated 
Up to now 20 comparisons were defined. The following list shortly introduces the comparisons and sketches 
special problems (SP), which could be observed for a special comparison. Clearly, some defined tasks seem to 
be simple, but they prove tricky, so that they must cause problems in implementation, etc.  

 

C1 Lithium-Cluster Dynamics, SNE 0 (11/1990),  
checks integration of stiff systems, parameter variation, and steady state calculation.  

  SP: loops with logarithmic increments, correct double – logarithmic plots, steady state calculation. 

Proceedings 5th MATHMOD Vienna, February 2006       (I.Troch, F.Breitenecker, eds.)

Physical Modelling 11- 3



C2 Flexible Assembly System, SNE 2 (3/1991),  
discrete system, compares features for submodel structures, control strategies, and optimisation. 

  SP: complex control strategies, analytical considerations before modelling very helpful, optimisation avoidable. 
C3 Generalised Class-E Amplifier, SNE 2 (7/1991), 

simulation of electronic circuits, table functions, eigenvalue analysis, and complex experiments.  
  SP: use of same model for analytical and numerical analysis, up to now accuracy, table function evaluation  

vs. piecewise functions. 
C4 Dining Philosophers I, SNE 3 (11/1991),  

general comparison, involving not only simulation but also analysis e.g. by Petri nets and, etc. 
  SP: network analysis for deadlocks, simultaneous events, results difficult to compare. 
C5 Two State Model, SNE 4 (3/1992),  

checks high- accuracy features and state event handling. 
  SP: analytical approach possible, but ill-conditioned; fully discrete approach possible, accuracy of state  

event handling. 
C6 Emergency Department - Follow-up Treatment, SNE 6 (11/1992),  

discrete system, tests features for modelling, concepts of availability, and complex control strategies. 
  SP: no strict separation of entities and resources, complex routing and priority problems. 
C7 Constrained Pendulum, SNE 7 (3/1993),  

checks features for hybrid modelling, comparison of models, state events, and boundary value problems. 
  SP: choice of states, different levels of hybrid approaches. 
CP1 Parallel Simulation Techniques, SNE 10, (3/1994),  

deals with the benefits of distributed and parallel computation for simulation tasks; three test examples test 
parallelisation techniques.  

  SP: results not encouraging wrt parallelisation, very often direct programming necessary. 
C8 Canal-and-Lock System, SNE 16 (3/1996),  

discrete system, checks features for complex logic control, validation and variance reduction. 
  SP: complex logic control, analytical considerations necessary; support for advanced statistical analysis  

(variance reduction methods) often missing. 
C9 Fuzzy Control of a Two Tank System, SNE 17, (7/1996), asks for approaches and for 

implementations of modules for fuzzy control. 
  SP: support for fuzzy control, two-dimensional calculations for control surface, pure discrete approach possible. 
C10 Dining Philosophers II, SNE 18 (11/1996),  

reviews discrete simulators with respect to concurrent access to resources and with deadlocks. 
  SP: discrete random variables, simultaneous events, deadlock recognition. 
C11 SCARA Robot, SNE 22 (3/1998),  

deals with implicit and hybrid systems with state events.  
  SP: implicit model, different approaches for collision event and action. 
C12 Collision of Spheres, SNE 27 (11/ 1999),  

allows numerical or analytical analysis as well as continuous or discrete approaches 
  SP: broad variety of approaches (numerical - continuous, numerical – discrete, numerical – analytical,  

analytical – symbolic), collision limit. 
C13 Crane Crab with Embedded Control, SNE 31 (3/2001), revised SNE 35/36 (11/2002), 

 checks techniques and features for embedded digital control with sensors and with DAE-systems. 
  SP: implicit model, discrete control coupled with sensor diagnosis, complex experiments. 
C14 Supply Chain, SNE 32/33 (11/2001), SNE 34 (7/2002), 

addresses discrete simulators - features for supply chain systems (messages, strategies). 
  SP: distinction between material flow and order flow, distance-dependent control strategies. 
C15 Clearance Identification, SNE 35/36 (11/2002), 

checks identification features (based on measured data) and influences of noise. 
  SP: identification algorithms, short-term input functions (Dirac-like), support of statistics. 
C16 Restaurant Business Dynamics, SNE 40 (5/2004),  

addresses agent-based simulation as well DEVS approach and classical programming 
  SP: renaissance of activity scanning, coordination of run samples, optimisation  
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SNE COMPARISON 

 Sum C1 C2 C3 C4 C5 C6 C7 CP C8 C9 C
10 

C
11 

C
12 

C
13 

C
14 

C 
15 

C 
16 

C 
17 

C
18 

C
19 

0   D                                       
1 5 5 D                                     
2 8 4 4 D                                   
3 10 4 3 3 D                                 
4 13 1 5 5 2 D                               
5 8 4 - 1 1 2                               
6 5 - 2 - 2 1 D                             
7 7 1 2 1 2 - 1 D                           
8 5 - 1 - - - 1 3                           
9 5 - - - - - 2 3                           

10 7 1 2 - - - 1 2 D/1                         
11 8 2 2 1 - 1 - - 2                         
12 7 1 - 1 - - - 2 3                         
13 4 - - - - - - 3 1                         
14 6 3 - 1 - - - 2 -                         
15 2 - - 1 - 1 - - -                         
16 3 1 - - - - - 1 - D/1                       
17 6 - - 1 - 1 - 1 1 1 D/1                     
18 5 - - - - - - 2 2 - - D/1                   
19 6 - - - - - - - 1 1 1 3                   
20 5 - - - - - - 1 - 1 1 2                   
21 10 - 1 - 1 - 1 5 - - - 2                   
22 10 1 - 1 - 1 - 5 - 1 - - D/1                 
23 5 - 2 - - - - - - - 2 - 1                 
24 7 1 - - 1 - - 2 - - - 1 2                 
25 7 - 1 - - 1 - - - - 3 1 1                 
26 11 2 1 2 1 1 - 1 - - 1 1 1                 
27 5 - - 1 - - - - - - 2 1 - D/1               
28 7 - - 2 - 1 - - - - 2 - - 2               

29/30 11 1 1 1 1 - 3 - - - - 1 - 3               
31 6 - - - - - - 1 - - - - 1 3 D/1             

32/33 10 - 1 - - - - 1 - - 2 1 - 4 - D/1           
34 5 1 1 - - - 1 - - - - 1 - 1 - -           

35/36 13 2 - - 1 2 - 3 - - - 1 - - 2 1 D/1         
37 11 - 1 - - 1 - 2 - -   2 - - 2 2 1         

38/39 14 1 2 1 1 1 3 - 1 - - 1 1 - 1 - 1         
40 9 - 1 2 - 1 1 - - - - - 1 - - 1 1 D/1       

41/42 9 1 - - - - - - - 1 - 1 - 1 - 1 1 2 D/1     
43 8 - - - 1 - - 1 - 1   1 - - 1 - 1 1 - D/1   

44/45 8 1 - - - 1 1 - - - - - - 1 - - - 2 - 1 D/1 

Total 291 38 33 25 14 16 15 41 12 7 15 21 9 16 7 6 6 6 1 2 1 

 Sum C1 C2 C3 C4 C5 C6 C7 CP C8 C9 C
10 

C
11 

C
12 

C
13 

C
14 

C 
15 

C 
16 

C 
17 

C
18 

C
19 

 
Table 1: Definitions and solutions of ARGESIM Comparions in SNE - per issue, per comparison,  

summed up for comparisons and issue, and summed up in total 
 
 

Proceedings 5th MATHMOD Vienna, February 2006       (I.Troch, F.Breitenecker, eds.)

Physical Modelling 11- 5



C17 Spatial Dynamics of Epidemic, SNE 41/42 (12/204),  
analyses temporal and spatial behaviour of the process by cellular automata models. 

  SP: proper features for cellular automata in simulation systems, comparison of spatial/temporal results with 
pure temporal results. 

C18 Neural Networks vs. Transfer Functions, SNE 43, (7/2005),  
compares transfer function modelling and neural net modelling for given data of a nonlinear process. 

  SP: proper features for neural net modelling in the simulation system, combination of transfer functions with 
neural nets for parameter tuning. 

C19 Ground Water Flow, SNE 44/45, (12/2005),  
studies the flow of contamination in the ground water in 2D-space and time, allowing different modelling  
approaches for the spatial behaviour (numerical PDE solution, discretisation to ODEs, cellular automata, etc. 

  SP: features for description of spatial dynamics, combination of spatial/temporal behaviour with temporal  
behaviour of control inputs. 

 
Table 1 shows definitions and solutions of ARGESIM Comparisons in SNE - per issue, per comparison, summed 
up for comparisons and issue, and summed up in total 
 
2.3 Solutions of the Comparisons 
Not only readers of SNE, but also each simulationist is invited to participate in these comparisons by providing a 
“solution” with the simulator under investigation.  

A solution should consist of:  
i. a short description of the simulator,  
ii. description of modelling technique,  
iii. model description,  
iv. results of the three tasks,  
v. and additionally we ask for model sources 

 
The printed solution should fit into one page of SNE – templates are found at our web page. Solutions sent in are 
reviewed. Table 1 shows a summary of comparison solutions.  
A little bit of statistics: 

 20 comparisons 
 40 SNE issues 
 291 comparison solutions 
 7.3 solutions / SNE issue 
 most popular comparisons:  

C7 – 14.1%, C1 – 13.1%, C2 – 11.3% 

3. ARGESIM Comparisons as Education Tool 
It has turned out, that the ARGESIM Comparisons are a valuable source for demos, exercises, or benchmark 
studies in education on modelling and simulation [5], [6]. As the comparisons tend towards modelling ap-
proaches, they can be used not only in simulation software classes, but also in more or less general classes on 
modelling in natural sciences, in computer science and computer engineering, etc.  
Up to now, the model descriptions for all comparisons were given, as ODE, DAE, DEVS, or in another form. 
For education it is necessary, to study also the analytical modelling procedure, the derivation of the model, and 
the background of the laws which govern the model. Within a project for master theses and PhD theses, ARGE-
SIM will extend the comparison definitions by information on modelling procedure, on the physical background, 
etc. 
In order to make an ARGESIM Comparison a self-contained part of a lecture, each comparison should consist of  

i. Model description and derivation 
ii. Application area and background 
iii. Comparison definition 
iv. Various solutions 
v. Various implemented models (sources) 
 

SNE starts with this completion of the comparisons in SNE Issue 46 [8]: a contribution on physical background 
and laws for modelling for Comparison 1 Lithium Cluster Dynamics”, is in preparation. The following sections 
present modelling and background of two physical comparisons. 
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4. Comparison C1 – Lithium Cluster Dynamics - Modelling and Simulations of Desorption Kinetics 
This comparison deals with the desorption kinetics of Li atoms from LiF under electron bombardment. The 
comparison itself requires the time domain solution of the process using a model with three ‘centers’, performing 
three tasks: i) efficient solution of the stiff ODEs (comparisons of algorithms), ii) logarithmic parameter varia-
tion and double-logarithmic plot, and iii) calculation of steady states. 
 
4.1  Physical Modelling 
When a LiF1 surface with a temperature of approx. 700 K is being irradiated by an electron beam emission of 
lithium atoms can be measured. This typical behaviour of alkali halides is well known and due to their simple 
crystal structure this process is extensively studied. The specific dynamics depend on the temperature of the 
material, but at temperatures above 500 K the rate of evaporation from the surface is not the limiting factor in the 
experiment, so the effect of an electron beam can be studied in more detail.  

 

When electrons hit the surface with sufficient energy, so-
called F-centers (a term from solid state physics) are formed 
in the crystal. Those can either immediately cause desorp-
tion of a lithium atom, or they agglomerate near the surface 
of the material and form aggregates of various sizes, called 
F(i)-centers where I = 1, …, n  denotes the size. These break 
down after a characteristic time into F(1) -centers (short: F-
centers) again, which reach the surface and lead to emission 
of lithium atoms even after the electron beam has been 
turned off. This so-called delayed emission is depicted in 
figure 1.  
Experiments described in [9] show that during electron 
bombardment the Li emission rate is constant but drops 
significantly in a very short time ( < 20 ms) when bom-
bardment stops. It follows that during this short time inter-
val one can still observe a delayed emission of Li atoms.  
 

In order to build a model of the desorption dynamics some simplifications were made in [9]. These are justified 
by the small penetration depth of the electrons and the high temperature:  

• The diffusion time of F -centers to the surface is very small and can be neglected. 
• Every F -center reaching the surface causes desorption. 
• There is no spatial dependence of the Fi  -center concentration, i.e. centers are uniformly distributed. 
• Growth and decay of a center is only due to absorption or evaporation of an F(1) -center, i.e.  F(i) + F(i)-

↔ F(i+1)  
 

The following system of differential equations is found to describe the dynamics of the F(i) -centers accordingly 
to the assumptions made:  

 (1) 1
(1) ( ) (1) ( ) (2) (1) 2

2 1
3 2

2 2 ( )
n n

i h
i h

i h

dF P aF l F k F F l F k F
dt

−

= =

= − + − + −∑ ∑                                                         (1) 

   

 
( )

( 1) (1) ( ) ( ) (1) ( 1)
1 1

m
m m m m

m m m m
dF l F k F F l F k F F

dt
+ −

+ −= − − + , 2... 1m n= −                                       (2) 

  

 ( )
( ) (1) ( 1)

1

n
n n

n n
dF l F k F F

dt
−

−= − +                                                                                                         (3) 

 
In (2), m ranges from 2 to n-1; P denotes the rate by which F(1) -centers are formed, a the rate by which they get 
emitted from the surface. The li and kh are constants describing the rate at which F(i) -centers decay into F(1)-
centers and F(h)-centers combine with F(1)-centers to form F(h+1)-centers, respectively. Their value (taken from 
[8]) results from fitting the model to physical measurements the details of which are not of importance here; the 
li and kh for centers of size up to n = 6 are: 
 

 a = 700, l2 = 17, l3 = 8, l4 =7, l5 = 5, l6 = 2.5, k1 = 2, k2 = 2.5, k3 = 2.5, k4 = 2.7, k5 = 5.5 
 

The equations (1) - (3) are made up of terms describing how each kind of center is formed by other centers and 
the electron beam and breaks down into smaller centers or gets desorbed. They represent a balance, with no 
centers entering or leaving the system except by electron bombardment (P) and atom absorption (-aF(1)).  

                                                 
1Lithum (Li) and fluoride (F) form a crystalline salt called an alkali halide. 
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A detailed description of all appearing terms shows how the centers interact:  
• P … the rate at which F(1)-centers are formed; the electron beam doesn’t cause formation of 

higher-order centers. 
• -aF(1)) … only F(1)-centers get emitted from the surface with a rate proportional to their number;  

a is the according rate constant. 
• ( )

2

n i
ii

l F
=∑  in (1), li+1F(i+1) in (1), (2) for i =1, ..., n-1  ↔ -li F(i) for i =2, ..., n in (2), (3) … 

         a F(i)-center ( {2, ..., }i n∈ ) breaks down into an F(i-1)-center and a F(1)-center with rate li. 
• 1 (1) ( )

1

n h
hh

k F F−

=
−∑  in (1), ki F(1) F(i) in (1), (2) for {1, ..., 1}i n∈ −   

↔  ki-1 F(1) F(i-1) in (2), (3) for I = 2, …, 5    
    … F(i)-center combines with a F(1)-center to form a F(i+1)-center with rate ki. 

 

This model describing the dynamics of the F(i)-centers is discussed in the following sections. At this point it 
should be noted that the above system is stiff: as will be examined later, stiff solvers perform better than non-stiff 
ones, and the stiffness index (ratio of largest to smallest eigenvalue) is high. Most of the results were obtained by 
the use of Mathematica.  
 
4.2  Comparing Different Numbers of Centers 
A major question is how many centers should be 
used. Using more centers of higher order results 
also in more parameters to be identified. A com-
parison of F(1)-centers depending on the number 
of higher order centers used may be of help.  
This behaviour for different values of n is de-
picted in Figure 2. We examined the model (1)-
(3) with the given rate constants for n = 3, 4, 5, 
and 6. It can be seen that the higher n is, the more 
the differential equations describe the delayed 
emission behaviour which was observed in ex-
periments ([9]).  
In constructing this graph, we started with  
F(i)(0) = 0, for all i, simulated bombardment with  
P = 10000 for 10 seconds and turned off the elec-
tron beam at t = 10.  
 
4.3 Model with 3 Centers – Comparison C1 
Three centers (n = 3) are sufficient to get interesting results that can be validated by experimental data (see [9]). 
The variables and constants are renamed in order to be consistent with the definition of the Comparison C1: 
F(1) → f, F(2) → m, F(3) → r; a → lf, d3 → dr, d2 → dm, k1 → kf, k2 → kr. The system can then be rewritten as 
follows:  

2

2

2 2r m r f f

r m f r

r r

df d r d m k mf k f l f p
dt

dm d r d m k f k mf
dt
dr d r k mf
dt

= + − − − +

= − + −

= − +

                                                        (4) 

The parameters used are:  
• Constants: kr =1, kf =0.1, lf = 1000, dr = 0.1, dm = 1   
• The initial values are those taken after constant electron bombardment with P = 10000 for approxi-

mately 10 seconds: f(0) = 9.975, m(0) = 1.674, r(0) = 84.99 
• Time Interval: t Є [0, 10] 

 

A plot showing a typical curve describing the concentration of F -centers in time can be seen in Figure 3, with 
constant bombardment (P = 10000)  during t Є [-5, 0] and no bombardment (P = 0) afterwards, during t Є [0, 10]. 
When the electron beam is turned off ( t = 0) an immediate decay is observed.  
Logarithmic plots (Figure 4 and 5) reveal more of the dynamics: there is a local minimum shortly after the beam 
is turned off ( t = 0) followed by a local maximum shortly afterwards, when the decaying higher-order centers 
cause desorption of further lithium atoms. The position of the extrema depends on the desorption rate a and the 
maximum size n of aggregates considered.  
 

In order to compare solver performance and to calculate steady states the model has been implemented in MAT-
LAB using the SIMULINK package. The model diagram can be seen in Figure 6.  
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Figure 2: F(1)(t) for different number n  
of centers higher order.  
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Figure 3: A typical plot of f(t).  Figure 4: A typical plot of f(t), half logarithmic. 
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Figure 5: A typical plot of f(t), logarithmic. Figure 6: The SIMULINK model for n=3. 

 

Solver performance – Comparison C1 Task a. 

The computing time of various algorithms for solv-
ing the differential equation system for solving for  
t Є [0, 10] in Matlab are compared in Table 2. The 
results show that stiff solvers perform better than 
non-stiff ones.  
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Variation of lf – Comparison C1 Task b. 

The desorption parameter lf  is varied through the 
interval 102 to 104  to using logarithmic steps while 
the value f(t), i.e. the number of centers of size 1, is 
displayed in a plot which is logarithmic on both 
scales (Figure 7). It can be seen that after an initial 
desorption the speed of which depends on lf, the 
decay of centers of greater size entails delayed emis-
sion.  
 
The MATLAB commands used to produce this plot 
are:  
 
for i=1:n 
    a=10^(2+1*(i-1)/(n-1)); 
    sim('c1c', [0, 10]); 
    fc=xout.signals(3).values; 
    ti=xout.time; 
    loglog(ti, fc, '-'); 
    if(i==1) hold on;end 
end 

Figure 7: f(t),  for varying lf, using ode23t. 

Algorithm Time [sec.]  
ode45 (Dormand-Prince)  0.0688   

ode23 (Bogacki-Shampine)  0.0627   
ode113 (Adams)  0.1250   

ode15s (stiff/NDF)  0.0200   
ode23s (stiff/Mod. Rosenbrock)  0.0203   
ode23t (mod. Stiff/Trapezoidal)  0.0200   

ode23tb (stiff/TR-BDF2)  0.0200   
  

Table 2: Performance of MATLAB ODE solvers. 
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Figure 8: f(t) for varying lf, using ode15s. Figure 9: f(t)  for varying lf, using ode23. 

 
In Figure 7 the solver ode23t was used. Although both ode23t and ode15s are stiff solvers, they differ in that 
ode15s produces an artefact in the plot at the local minimum which can be seen in Figure 8. Non-stiff solvers fail 
badly; see Figure 9 for an example using ode23.  
Examining the artefact of ode15s in more detail for the case lf = 1000 (the corresponding plot of f(t)  can be seen 
in Figures 3-5) we have to look at the Jacobian matrix J(t) and their eigenvalues λi, i=1, 2, 3, in order to see if the 
system is stiff:  

 
ii

ii
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The eigenvalues λi of J(t), evaluated using the numerical solution obtained previously, are all negative, which 
means that the system is stable (Figure 10). The ratio SI(t) between the largest and smallest eigenvalues, called 
the stiffness index, is plotted in Figure 11 and found to be sufficiently high to call the system stiff. 
The inverted spikes in Figure 8 can be explained by the fact that the solver uses a stepsize that is too small to 
follow the dynamics of the system - the width of the spikes is about 5·10-4. They disappear, however, if the de-
fault relative error tolerance of 10-3  is set to a lower value of the order 10-6. Therefore, it is suggested that the 
default error tolerance in Matlab/SIMULINK is not sufficient to follow the quick dynamics of the system around 
t = 0.01. 
It is noteworthy that the numerical difficulties in this model do not arise - as could be expected - in the beginning 
where the stiffness index is largest but just before t = 0.01 where the stiffness index smaller. The explanation for 
this is that the values of all the F(i) get very small (about 10-2) in the latter region and, as the system is ill-
conditioned, numerical difficulties arise.  
 

-0.001

-0.01

-0.1

-1

-10

-100

-1000

1e-06 1e-05 1e-04 0.001 0.01 0.1 1 10

Time t  

10000

100000

1e-06 1e-05 1e-04 0.001 0.01 0.1 1 10

Time t

SI(t)

 
Figure 10: Eigenvalues of J(t). Figure 11: Stiffness index SI(t). 

 
Calculation of Steady States – Comparison C1 Task c. 
 

The steady states of the system of differential equations (4) during constant bombardment (P = 104) and without 
bombardment (P = 0), respectively, can be computed both analytically and numerically.  
For an analytical solution, one has to solve for  

               0 0 0df dm dr
dt dt dt

= , = , =                 →        
2 3

2 3( ) ( ) ( )f r f

f m f r m f

k p k k ppf t m t r t
l d l d d l

= , = , =  
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The analytic calculations give results shown in Table 3. Using any algorithm for finding roots of (3), for example 
Newton’s algorithm, a numerical solution can be obtained; in MATLAB there is the command trim, which uses 
a more efficient so-called sequential quadratic programming algorithm2 to find steady states. We see that the 
obtained solution is identical except for  F(3)  at P = 0, but the difference is very small.  
 
 
 
 
 
 
 
 

4.4 Analytical methods 

The structure of the model equation allow to use analytical methods without big difficulties. The methods ap-
plied are Taylor series expansion for f(t) at appropriate time instants and linearisation of the system (4) around 
certain time instants. 
 
Taylor series expansion. 

The Taylor series of degree k for f(t) at t0 is given by          
( )

0
0 0

0

( )( )( ) ( )
lk

l
k

l

f tT f t t t t
l=

, = −
!∑ . 

The differential equation system (4) can be used to recursively calculate the derivatives of f at t = 0 or any other 
point t  where the values of f(t0), m(t0), r(t0) are given numerically. 
For example,  T10(f, 0)(t) is given by  

 

6 2 9 3
10

11 4 13 5 16 6

18 7 20 8 22 9

24 10

( 0)( ) 9 975 9999 75 5 0282 10 1 69222 10

4 30468 10 8 89326 10 1 57505 10
2 51393 10 3 8043 10 5 7126 10
8 7323 10

T f t t t t

t t t
t t t

t

, = . − . ⋅ + . ⋅ ⋅ − . ⋅ ⋅

+ . ⋅ ⋅ − . ⋅ ⋅ + . ⋅ ⋅

− . ⋅ ⋅ + . ⋅ ⋅ − . ⋅ ⋅

+ . ⋅ ⋅

 

 
 
As can be seen in Figure 12, the Taylor approximation 
around t0 = 0 of a given degree is only valid until a 
certain time (about t0 = 0.01), after which it rapidly 
diverges to ±∞, even at higher degrees.  
 
Expanding about t0 = 0.01 (Figure 13) gives nearly the 
same figure. Using t0 = 1  as point of expansion (Fig-
ure 14) gives bad approximations that diverge to ±∞ 
very quickly.  
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 Figure 12: Taylor approximations, t0 = 0. 
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Figure 12: Taylor approximations, t0 = 0.01. Figure 12: Taylor approximations, t0 = 1. 

 
                                                 
2see http://www.mathworks.com/access/helpdesk/help/toolbox/optim/ug/f26622.html 

P F(1) F(2) F(3) 
0  0  0  0   

10000  10  10  1000  
 

Table 3: Steady states, analytical solution.

P F(1) F(2) F(3) 
0  0  0  -2·10-12  

10000 10  10  1000   
 

Table 4: Steady states, numerical solution. 
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Linearisation 

The model can be linearised and then analytically solved using linear approximations of the right sides of the 
system (4):  

 1 1 0 0 0

2 2 0 0 0 0

3 3 0 0 0

( ( ) ( ) ( )) ( ( ) ( ) ( )) ( )
( ( ) ( ) ( )) ( ( ) ( ) ( )) ( ) ( )
( ( ) ( ) ( )) ( ( ) ( ) ( )) ( )

df
dt f f t m t r t f f t m t r t f t
dm f f t m t r t f f t m t r t J t m t
dt

f f t m t r t f f t m t r t r tdr
dt

⎛ ⎞
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⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ = , , ≈ , , +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟, , , ,⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎜ ⎟⎜ ⎟
⎝ ⎠

 

 
The Jacobian J(t) is given by  
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and, evaluated at t = t0, gives us the linear system  

 1 0 0 0 0 0 0

2 0 0 0 0 0 0

3 0 0 0 0 0

( ( ) ( ) ( )) 1000 0 4 ( ) ( ) 2 ( ) 0 1 ( )
( ( ) ( ) ( )) 0 2 ( ) ( ) 1 ( ) 0 1 ( )
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⎜ ⎟
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This system is a linearisation of the original system 
and therefore resembles its behaviour in the neigh-
bourhood of t = t0.  
 
The exactness of the resulting approximation was 
examined at various points of the scale, t0 = 0,  
t0 = 0.01, t0 = 0.04, t0 = 0.05, and t0 = 1.  
Apparently, it is only good for the first part of the 
numerical solution. Similarly to Taylor expansion, 
linearising after t0 = 0.05 yields solutions that diverge 
very quickly.  
 
Surprisingly, linearising at t0 = 1 results in a solution 
that is valid also only around t0 = 0.05 (Figure 15). 
 

4.5 Model with Five Centers 

As rate equations can be given for arbitrary n (the size of the largest centers considered), we will now look at the 
results for n = 5 and compare them to those for n = 3  discussed earlier. The full differential equation system and 
rate constants for n = 5  are given below. The initial values F(i)(0) are taken from a simulation that starts at  
t = -10 with F(i)(-10) = 0 for all i and runs 10 seconds with P = 10000: 
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Figure 15: Linearisation at different time instants. 
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The SIMULINK model for the case of 5 centers is very 
similar to the case of 3 centers. The computing time of 
the different MATLAB solvers for solving for t Є [0, 
10] are compared in Table 5, where stiff solvers perform 
slightly better, again.  
A plot showing what happens when a varies from 100  
to 1000 in logarithmic steps can be seen in Figure 16 
and Figure 17 for the ode23t (ode15s looks the same) 
and ode23 solvers, respectively. Again, the non-stiff 
solver ode23 fails blatantly when the F(i)(t)  get very 
small. 
 
Using the Jacobian matrix one can again calculate the eigenvalues and the stiffness index (Figures 18 and 19). 
There are 5 eigenvalues that give a ratio similar to the case of  n = 3 up to  t = 1, but then it drops below 100. 
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Figure 16: f(t) for varying lf, using ode23t. Figure 17: f(t)  for varying lf, using ode23. 
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Figure 18: Eigenvalues of J(t). Figure 19: Stiffness index SI(t) 

 
 

Analytically and numerically determined steady states are given in Table 6 and Table 7, respectively. For an 
analytical solution, one has to solve for derivatives getting zero. Again, there are slight errors in the numerical 
solution. 
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Algorithm  Time [sec.]  
ode45 (Dormand-Prince)  0.2874   

ode23 (Bogacki-Shampine)  0.2453   
ode113 (Adams)  0.3015  

ode15s (stiff/NDF)  0.0601  
ode23s (stiff/Mod. Rosenbrock)  0.2784  
ode23t (mod. Stiff/Trapezoidal)  0.1201  

ode23tb (stiff/TR-BDF2)  0.1573   
 

Table 5. Computing time for different ODE solvers 
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The Taylor expansion behaves the same way here as for n = 3. There is a characteristic point up to which it is 
usable, and after that it diverges very quickly around the point of expansion (Figures 20, 21 and 22). The linear-
ised version of the model gives analogous results: it is a good approximation up to a certain point beyond which, 
however, the linear model is insufficient to describe the dynamics (Figure 23).  
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Figure 20: Taylor approximations, t0 = 0. Figure 21: Taylor approximations, t0 = 0.01. 
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Figure 22: Taylor approximations, t0 = 1. Figure 23: Linearisation at different time instants. 

 
 
5.  Comparison 12: Collision Processes in Rows of Spheres 
 
The ARGESIM Comparisons C12 ‘Collision of Spheres’, defined by R. Hohmann [10], University Magdeburg, 
deals with a model of mechanics: four spheres in a row are colliding. The movement of the spheres is given by 
linear movement, so that for calculation of dynamics also analytical methods can be used. The features to be 
compared represent a large number of collision events, the numerical accuracy, the iteration of a boundary value, 
and stochastic parameter variations. Piecewise, constant velocities permit both a continuous and a discrete treat-
ment.  
 
Subject of the investigation are sequences of collisions, caused by the impact of a sphere on a resting row of 
spheres. In the elastic case only one impact occurs between neighbouring spheres, whereas one can observe 
many interactions if elasticity decreases. Numerical problems result from the peculiarity, that the relative dis-
tances and velocities at a low elasticity can be smaller by orders of magnitude than the absolute variables. In 
order to avoid small faulty differences of great values, the relative quantities are used as variables, and absolute 
quantities are obtained by summation.  

P  F(1) F(2)  F(3)   F(4)  F(5)   
0  0  0  0   0  0   

10000  14.2857 24.0096 107.186  546.866 4218.68
   

Table 6: 5 Centers, steady states, analytical solution. 

P  F(1) F(2)  F(3)   F(4)  F(5)   
 0.0851·10-21 -0.0817·10-21 0.0132·10-21 -0.3706·10-21 0.2118·10-21 

10000 14.3 24.0 107.2 546.9 4218.7 
   

Table 7: 5 Centers, steady states, numerical solution. 
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5.1 Physical Modelling: Partially Elastic Collision of two Masses  
 
The collision shall take place at t = 0 with the velocities v1, v2 (Figure 24a). The force F(t) being exerted from 
both masses on each other, rises first with t and reaches its maximum at t = t* (Figure 24b). In this compression 
phase, the bodies are increasingly deformed in the immediate vicinity of the contact place. At the end (maximum 
deformation) both bodies have the same velocity v*. In the following restitution period the deformations disap-
pear partially or completely, concurring with a reduction of the contact force F(t). After the time interval tS the 
collision process is finished and both masses move with velocities  1v  and  2v , respectively.  

The force impulses KF̂  and RF̂ , exerted during both 
periods, determine the momentum change. They are 
represented by the areas below the force curve F(t). 
The force impulse in the restitution phase reaches at 
most the value of the compression phase with e  res-
titution coefficient (collision coefficient):  
 
                 10,ˆˆ ≤≤⋅= eFeF KR                              (6) 
 
An elastic impact has the collision coefficient e = 1, 
whereas an inelastic collision is known to have no 
restitution phase (e = 0). In general, partially elastic 
case the collision coefficient takes on values of   
0 < e < 1.  
 
Using the momentum conservation law, the new 
velocities in the next period of time follow this 
piecewise description: 
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After the limiting process of the collision time tS  → 0, the impact shall be modelled in the following as a state 
event that takes place immediately.  
 
5.2 Physical Modelling: Mathematical Model of a Spheres’ Row  
 
In order to obtain an ideal translation, the p spheres arranged in a row are tied up with infinite long threads with-
out any friction (Figure 25). The model consists of p = 4 spheres; for all collisions e takes on a constant value 
that does not depend on the velocities. A further precondition is the equality of the diameters d for all spheres, 
their masses mi and distances a from each other.  

 

In the model description the relative quantities are variables:  
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For determination of the remaining absolute quantities by 
summation equations of motion for the inner distances yi 
(i=1,2,3) and the absolute variable x1 are needed. The initial 
conditions are chosen so that sphere 1 strikes the motionless 
other three spheres with velocity v0. An influence of external 
forces is not considered.  

 

Equations of motion and absolute quantities are: 
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                                    (10) 

Figure 24: Central impact of two masses 

Figure 25: Collision pendulum of four spheres
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The expressions on the right side of equations (10) describing the velocities after a collision contain the relative 
velocities at the moment of impact as derivatives of the distance variables yi, that determine the time of collision. 

Collision 1-2: 
          11121122121211 ,)/()1(,)/()1( yeyymmmeyyymmmexx &&&&&&&& ⋅−=⋅+⋅++=⋅+⋅++=                (11a) 
 

Collision 2-3: 
          22232233232311 ,)/()1(,)/()1( yeyymmmeyyymmmeyy &&&&&&&& ⋅−=⋅+⋅++=⋅+⋅++=                    (11b) 
 

Collision 3-4  
                                     33343422 ,)/()1( yeyymmmeyy &&&&& ⋅−=⋅+⋅++=                                                       (11c) 
 

Insignificant or positive relative velocities  )0()0()0( 321 ≥∧≥∧≥ yyy &&& , i.e., monotonously increasing absolute 
velocities, establish the termination criterion for a simulation run, that is, no further collisions will occur and the 
velocities will not change.  
 
5.3 Tasks for Comparison C12 
 

As in all comparisons, three tasks have to be performed. 
Task a. (a1) Graphical representation of the distance-time functions  y1(t),  y2(t) and y3 (t) for parameter values  
e = 0.2, d = 1 and initial values a = 1, v0 = 1 in time interval 0 ≤ t ≤ 15 (termination criterion met). Initial values 
and sphere diameter d remain valid in the following.  
(a2) Final values of the velocities for e = 1 (elastic case) and for the quasi-plastic case in which velocities are 
sufficiently equal.  
 

Task b. (b1) Number of collisions as a function of the restitution coefficient  n(e) which should be varied from  
e = 1 to a value for which the quasi-plastic case is reached.  
(b2) Graphical representation of the final velocities  4321 ,,, xxxx &&&&   as a function of values of e for e ≤ 1 up to the 
quasi-plastic case.  
 

Task c. (c1) As a boundary value problem the restitution coefficient e is to be determined such that the final 
velocity be v4 = v0 /2.  
(c2) The restitution coefficient e, which is equal for all spheres, is now a normally distributed stochastic variate 
with mean value m = 0,5 and standard deviation s = 0,05. The distribution function of v4, mean value, standard 
deviation and confidence interval with confidence probability of 95% for a sufficiently large sample size are to 
be determined.  
 
5.4 Graphical Results – Comparison C12 ‘Collision of Spheres’and Solution approaches 
 

  
Figure 26: Distances of spheres over time Figure 27: Number of collisions vs. restitution coefficient 

  

  
Figure 28: Final velocities vs. restitution coefficient Figure 29: Distribution of final velocity of 4th sphere for 

stochastic restitution coefficient 
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Before sketching the various approaches to this comparison, the graphical results are presented. Figure 26 shows 
the results for task a, for distance-time functions  y1(t),  y2(t) and y3(t) e = 0.2, d = 1 and initial values a = 1, v0 = 
1 in time interval 0 ≤ t ≤ 15.  
Figure 27 shows the number of collisions versus the restitution coefficient: starting with n(e) = 3 collisions for  
a = 1, increasing to n(e) = 6 at e = 0.9, staying constant until a = 0,3, increasing to n(e) = 13 at e = 0.2, and n(e) 
going to infinity for a → 0.  
 
Figure 28 displays the final velocities of the spheres, depending from the restitution coefficient: clearly, for a = 1 
the first three spheres do not move, and the fourth sphere has got all the energy for moving further on with veloc-
ity 1; decreasing a lets the first three spheres move with increasing velocity, while the fourth sphere gets slower; 
for a → 0 velocities of all spheres tend 0.25.  
Finally, Figure 29 shows the distribution of the final velocity of 4th sphere for a stochastic restitution coefficient. 
 
5.5 Solution Approaches – Comparison C12 ‘Collision of Spheres’ 
 
This general comparison allows a broad variety of approaches. In principle, the system is governed by four 
ODEs for the position of the spheres. Numerical investigations show, that its is highly recommended to use in-
stead of the four ODEs for position three ODEs for the differences of the positions. Do not taking into account 
the simplicity of the ODEs, the collisions are state events, which have to be recognised, localised with arbitrary 
accuracy, and handled (impact). On the other hand, the ODEs can be solved analytically, and the collision times 
can be formulated as analytical formula. In both cases, especially in case of small values for the restitution factor 
a, high accuracy plays a dominant role for detecting or determining the collisions. As solutions are calculated 
numerically with minimal stepsizes ( as well in case of ODE solvers or solving the analytical collisions equa-
tions), one also may use a discretised time base with minimal stepsize, so that also event driven approaches can 
be used. 
 

The principle approaches are : 
 

• Solution of the ODEs, with collisions as state events 
• Analytical formula for collision events 
• Event- based determination of collisions 
• Mixed approaches 
• High accuracy approaches 

 

In the following, some of the approaches of the comparison solutions sent in are sketched. 
 
Analytical Formula for Collision Events - FORTRAN [11]. 
A FORTRAN 90 program was used to (1) determine 
the next two spheres which will hit each other and (2) 
to update the positions and the velocities of the spheres 
after the collision according to the rules for partially 
elastic collisions. All calculations were carried out in 
double precision.  
The program terminates if all relative velocities are not 
negative (no more collisions) or if the next two collid-
ing spheres cannot be determined uniquely (two pairs 
of spheres are numerically equally likely to collide 
next). Assuming that the last pair of spheres to collide 
will not also be the next to collide, simplifies the algo-
rithm. Additionally, only spheres with a negative rela-
tive velocity are considered. 
 
Analytical Formula for Collision Events / SLX/LEDA – High Accuracy [12]. 
 
In order to deal with this problem by a discrete event 
simulator we determine both the time to the next interac-
tion and the two spheres involved in this collision. Our 
algorithm uses the relative velocities of neighbouring 
spheres to find the minimum among all possible future 
interaction times. Based on that we identify the spheres to 
execute the next collision and determine their resulting 
velocities as initial conditions for the next iteration step. 

!  previous hit of spheres 1 and 2  
IF (.NOT. t12_log) THEN  
  IF ( (v23 .LT. 0) .AND. (v34 .LT. 0) ) THEN  
    IF (d23/v23 .EQ. d34/v34) THEN 
      EXIT  
    END IF  
    t_neg_max = max( d23/v23 , d34/v34 ) 
    IF (t_neg_max .EQ. d23/v23) THEN  
      nexthit = 23  
    ELSE IF (t_neg_max .EQ. d34/v34) THEN  
      nexthit = 34  
    END IF  
  ELSE IF ( v23 .LT. 0 ) THEN  
    nexthit = 23  
  ELSE IF ( v34 .LT. 0 ) THEN  
    nexthit = 34  …………………. 

for (j = 1; j <= N-1; j++) 
if (dv[j] > 0.0) dt[j] = dx[j] / dv[j]; 
else dt[j] = 1e+10; 
k = 1; dtmin = dt[k]; 
for (j = 2; j <= N-1; j++) 
 if (dt[j] < dtmin) 

{ dtmin = dt[j]; k = j; } 
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LEDA (Library of Efficient Data types and Algorithms) is a software library which introduces the algebraic 
real data type to C++. The reals are the best approximation of the mathematical real numbers IR. They offer 
exact results for the operators +, -, *, /, the k-th root for any natural number k and for comparative operators. 
 
The reals ‘memorize’ the calculations executed in an expression dag. Only if two reals are compared, or 
a number of the type real is to be output, the result is computed ‘as precise as necessary’ in order to execute an 
exact comparison or in order to output the result with a given number of digits. This is however connected to a 
dramatically increasing runtime. 
LEDA is coupled with SLX in order to increase the accuracy of the calculations essentially. 
 
 
Analytical Formula for Collision Events /  
ODEs for Movement - MATLAB [13]. 
 
In this solution, first the time of the next impact is analyti-
cally determined repeatedly.  
 
Second, the resulting time intervals between the collisions, 
together with the initial values, the positions and velocities of 
the spheres after the last collisions control a numerical inte-
gration (of the equations of motion). The algorithm calculates 
the positions of the spheres by solving numerically these 
differential equations (using MATLAB’s algorithm ODE23): 
 
 
ODE Solution with State Event Handling for  
Collision Events / DYMOLA [14]. 
Model: With the following discussed hybrid model approach, the 
capability of Dymola to handle hybrid systems is tested. In this ap-
proach the implementation of the model is made in Dymola because 
of the simplicity of the Model, no need for a graphical based model-
ling is given. A hybrid model in Dymola consists of differential, 
algebraic and discrete equations. Furthermore it offers three variable 
step size algorithms for the numerical treatment of such Differential-
Algebraic-Equations (DAEs).  
The Dymola user manual suggests using the statement when 
(cond) then to handle events in continuous systems. To reinitialise a 
variable in case of an event Dymola provides the reinit statement. 
The implementation is then straightforward: 
In Dymola, all differential, algebraic and discrete equations are 
treated as synchronous in time.  
 
Therefore in Dymola / Modelica the assumption is used that all equations in a model may potentially be active at 
the same time instant.  
It is easy then to construct conflicting equations. To handle this problem multiply events have to be implemented 
in the so-called algorithm section.  
 
5 ODE Solution with State Automata- Controlled  
Event Handling for Collision Events / AnyLogic [15]. 
 
The system of colliding spheres is modelled as one AnyLogic object 
with several variables representing the positions of spheres (x1, x2, 
x3, x4), their relative distances (y1, y2, y3), and their absolute (vx1, 
vx2, vx3, vx4) and relative (vy1, vy2, vy3) velocities. The equations 
for motion of the spheres are associated with the object.  
 
The state chart has a single state and three transitions representing 
collisions of spheres. These transitions are triggered by change 
events – Boolean expressions over variables. 
 

if ydot(j)<0 
time=abs(y(j)/ydot(j)); 
     if time<dt(i,1) 
       dt(i,1)=time; dt(i,2)=j; 
     end 
  if dt(i,1)==0 
     dt(i,1)=time; dt(i,2)=j; 
  end 

ODE23(@odefun_y,[0,dt(i,1)],y’,[],ydot’); 
y=y_ode(size(y_ode,1),:); 
function [ydot]=odefun_y(T,Y,ydot) 
function [ydot]=hit23(ydot,e,m2,m3) 
ydot(1)=ydot(1)+(1+e)*m3/(m2+m3)*ydot(2); 
ydot(3)=ydot(3)+(1+e)*m2/(m2+m3)*ydot(2); 
ydot(2)=-e*ydot(2); 

class Comparison12  
 .. declaration of vari-
ables… 

algorithm 
when y1<=0 
  reinit(x1p, x1p + 
(1+e)*m2/(m1+m2)*y1p); 
  reinit(y2p, y2p + 
(1+e)*m1/(m1+m2)*y1p); 
  ….. 
end 
….other events … 
equation  
der(x1)  = x1p; 
der(x1p) = 0; 
… other equations… 
end Comparison12 

 

Trigger 
y1 < 0 && vy1 <0 
Action 
vx1 = vx1+(1+e)*m2/(m1+m2)*vy1;
vy2 = vy2+(1+e)*m1/(m1+m2)*vy1;
vy1 = -e*vy1; 

y1 = x2-x1-d vx2 = vx1+vy1 d(x1)/dt = vx1 
y2 = x3-x2-d vx3 = vx2+vy2 d(x2)/dt = vx2 
y3 = x4-x3-d vx4 = vx3+vy3 d(x3)/dt = vx3 

d(x4)/dt = vx4 

… … 
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The hybrid state chart can be entered in AnyLogic 
model editor, and the simulation engine automati-
cally detects change events, changes the working set 
of equations and readjusts the numerical methods. 
 
 
ODE Solution with State Event Handling for Col-
lision Events / SIMULINK [16]. 
 
The main components of the SIMULINK model are 
the s-function that provides the velocities and times 
of collisions and an integrator that calculates the 
positions of the spheres.  
 
Since the zero-detection-block is not available in the 
presence of an s-function, integration was limited to 
[0, ∞). For the s-function an event-driven approach 
was chosen: using state- (current velocities) and 
input- (current distances) information the s-function 
calculates state update and the time when it should be 
called again (time of next collision).  
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function sys=mdlGetTimeOfNextVarHit(t,v,u,e) 
global thit stop hittype 
% get time of next collision 
v_0=-eps;y_0=realmin;  
thit = 0; 
hittype = 0; 
if (v(2) < v_0) & (u(2) > y_0) 
    thit = - u(2) / v(2); hittype = 1; 
end  
if (v(3) < v_0) & (u(3) > y_0) 
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